Fix typo in Quick Start/Step-by-step walk-through (#3007)
* Fix typo in Quick Start/Step-by-step walk-through * Fix typo in Quick Start/Step-by-step walk-through * Fix snippets in lightning module * Remove testblock doctest does not have torch with CUDA, so x.cuda() will fail * Remove test code "..." is not python, so doctests fail * Fix #3005 * Fix indentation, stage in docs Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: Teddy Koker <teddy.koker@gmail.com> Co-authored-by: mergify[bot] <37929162+mergify[bot]@users.noreply.github.com>
This commit is contained in:
parent
6939f6fc11
commit
9f6be96f84
|
@ -1,6 +1,7 @@
|
|||
.. testsetup:: *
|
||||
|
||||
from pytorch_lightning.core.lightning import LightningModule
|
||||
from pytorch_lightning.core.datamodule import LightningDataModule
|
||||
from pytorch_lightning.trainer.trainer import Trainer
|
||||
|
||||
.. _introduction-guide:
|
||||
|
@ -259,9 +260,9 @@ In this case, it's better to group the full definition of a dataset into a `Data
|
|||
- Val dataloader(s)
|
||||
- Test dataloader(s)
|
||||
|
||||
.. code-block:: python
|
||||
.. testcode:: python
|
||||
|
||||
class MyDataModule(pl.DataModule):
|
||||
class MyDataModule(LightningDataModule):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
|
|
@ -51,7 +51,7 @@ Notice a few things.
|
|||
|
||||
# or to init a new tensor
|
||||
new_x = torch.Tensor(2, 3)
|
||||
new_x = new_x.type_as(x.type())
|
||||
new_x = new_x.type_as(x)
|
||||
|
||||
5. There are no samplers for distributed, Lightning also does this for you.
|
||||
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
.. testsetup:: *
|
||||
|
||||
from pytorch_lightning.core.lightning import LightningModule
|
||||
from pytorch_lightning.core.datamodule import LightningDataModule
|
||||
from pytorch_lightning.trainer.trainer import Trainer
|
||||
import os
|
||||
import torch
|
||||
|
@ -357,9 +358,9 @@ And the matching code:
|
|||
|
||||
|
|
||||
|
||||
.. code-block::
|
||||
.. testcode:: python
|
||||
|
||||
class MNISTDataModule(pl.LightningDataModule):
|
||||
class MNISTDataModule(LightningDataModule):
|
||||
|
||||
def __init__(self, batch_size=32):
|
||||
super().__init__()
|
||||
|
@ -407,7 +408,7 @@ over download/prepare/splitting data
|
|||
|
||||
.. code-block:: python
|
||||
|
||||
class MyDataModule(pl.DataModule):
|
||||
class MyDataModule(LightningDataModule):
|
||||
|
||||
def prepare_data(self):
|
||||
# called only on 1 GPU
|
||||
|
@ -415,12 +416,12 @@ over download/prepare/splitting data
|
|||
tokenize()
|
||||
etc()
|
||||
|
||||
def setup(self):
|
||||
def setup(self, stage=None):
|
||||
# called on every GPU (assigning state is OK)
|
||||
self.train = ...
|
||||
self.val = ...
|
||||
|
||||
def train_dataloader(self):
|
||||
def train_dataloader(self):
|
||||
# do more...
|
||||
return self.train
|
||||
|
||||
|
@ -432,7 +433,7 @@ First, define the information that you might need.
|
|||
|
||||
.. code-block:: python
|
||||
|
||||
class MyDataModule(pl.DataModule):
|
||||
class MyDataModule(LightningDataModule):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
@ -444,7 +445,7 @@ First, define the information that you might need.
|
|||
tokenize()
|
||||
build_vocab()
|
||||
|
||||
def setup(self):
|
||||
def setup(self, stage=None):
|
||||
vocab = load_vocab
|
||||
self.vocab_size = len(vocab)
|
||||
|
||||
|
|
Loading…
Reference in New Issue