diff --git a/.drone.yml b/.drone.yml index 472861852c..91ccba28a1 100644 --- a/.drone.yml +++ b/.drone.yml @@ -39,6 +39,14 @@ steps: # when Image has defined CUDa version we can switch to this package spec "nvidia-dali-cuda${CUDA_VERSION%%.*}0" - pip install --extra-index-url https://developer.download.nvidia.com/compute/redist nvidia-dali-cuda100 --upgrade-strategy only-if-needed - pip list + # todo: remove unzip install after new nigtly docker is created + - apt-get update -qq + - apt-get install -y --no-install-recommends unzip + # get legacy checkpoints + - wget https://pl-public-data.s3.amazonaws.com/legacy/checkpoints.zip -P legacy/ + - unzip -o legacy/checkpoints.zip -d legacy/ + - ls -l legacy/checkpoints/ + # testing... - python -m coverage run --source pytorch_lightning -m pytest pytorch_lightning tests -v --durations=25 # --flake8 # Running special tests - sh tests/special_tests.sh diff --git a/.github/workflows/ci_test-conda.yml b/.github/workflows/ci_test-conda.yml index 15797ff59e..06a98e23c6 100644 --- a/.github/workflows/ci_test-conda.yml +++ b/.github/workflows/ci_test-conda.yml @@ -34,10 +34,21 @@ jobs: # todo this probably does not work with docker images, rather cache dockers uses: actions/cache@v2 with: - path: Datasets # This path is specific to Ubuntu - # Look to see if there is a cache hit for the corresponding requirements file + path: Datasets key: pl-dataset + - name: Pull checkpoints from S3 + # todo: consider adding coma caching, but ATM all models have less then 100KB + run: | + # todo: remove unzip install after new nigtly docker is created + apt-get update -qq + apt-get install -y --no-install-recommends unzip + # enter legacy and update checkpoints from S3 + cd legacy + curl https://pl-public-data.s3.amazonaws.com/legacy/checkpoints.zip --output checkpoints.zip + unzip -o checkpoints.zip + ls -l checkpoints/ + - name: Tests run: | # NOTE: run coverage on tests does not propagare faler status for Win, https://github.com/nedbat/coveragepy/issues/1003 diff --git a/.github/workflows/ci_test-full.yml b/.github/workflows/ci_test-full.yml index c42b9732a8..0d8fb902c6 100644 --- a/.github/workflows/ci_test-full.yml +++ b/.github/workflows/ci_test-full.yml @@ -87,6 +87,16 @@ jobs: restore-keys: | ${{ runner.os }}-pip-py${{ matrix.python-version }}-${{ matrix.requires }}- + - name: Pull checkpoints from S3 + # todo: consider adding some caching, but ATM all models have less then 100KB + run: | + cd legacy + # wget is simpler but does not work on Windows + python -c "from urllib.request import urlretrieve ; urlretrieve('https://pl-public-data.s3.amazonaws.com/legacy/checkpoints.zip', 'checkpoints.zip')" + ls -l . + unzip -o checkpoints.zip + ls -l checkpoints/ + - name: Install dependencies env: # MAKEFLAGS: "-j2" @@ -119,8 +129,7 @@ jobs: - name: Cache datasets uses: actions/cache@v2 with: - path: Datasets # This path is specific to Ubuntu - # Look to see if there is a cache hit for the corresponding requirements file + path: Datasets key: pl-dataset - name: Tests diff --git a/.github/workflows/nightly.yml b/.github/workflows/nightly.yml index ce9caf1b34..71227308cd 100644 --- a/.github/workflows/nightly.yml +++ b/.github/workflows/nightly.yml @@ -35,7 +35,7 @@ jobs: with: time: 5m - # We do this, since failures on test.pypi aren't that bad + # We do this, since failures on test.pypi aren't that bad - name: Publish to Test PyPI uses: pypa/gh-action-pypi-publish@v1.4.1 with: diff --git a/.github/workflows/release-pypi.yml b/.github/workflows/release-pypi.yml index 3cc3157ffb..b0310c3d36 100644 --- a/.github/workflows/release-pypi.yml +++ b/.github/workflows/release-pypi.yml @@ -5,7 +5,7 @@ on: # Trigger the workflow on push or pull request, but only for the master bra push: branches: [master, "release/*"] # include release branches like release/1.0.x release: - types: [created, "release/*"] + types: [created] jobs: @@ -61,3 +61,51 @@ jobs: with: user: __token__ password: ${{ secrets.pypi_password }} + + # Note: This uses an internal pip API and may not always work + # https://github.com/actions/cache/blob/master/examples.md#multiple-oss-in-a-workflow + - name: Cache pip + uses: actions/cache@v2 + with: + path: ~/.cache/pip + key: ${{ runner.os }}-pip-${{ hashFiles('requirements.txt') }} + restore-keys: ${{ runner.os }}-pip- + + - name: Install dependencies + run: | + pip install -r requirements.txt --find-links https://download.pytorch.org/whl/cpu/torch_stable.html --quiet + pip install virtualenv + pip install awscli + + - name: Configure AWS credentials + uses: aws-actions/configure-aws-credentials@v1 + with: + aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }} + aws-secret-access-key: ${{ secrets.AWS_SECRET_KEY_ID }} + aws-region: us-east-1 + + - name: Pull files from S3 + run: | + aws s3 cp --recursive s3://pl-public-data/legacy/checkpoints/ legacy/checkpoints/ # --acl public-read + ls -l legacy/checkpoints/ + + - name: Generate checkpoint + if: startsWith(github.event.ref, 'refs/tags') || github.event_name == 'release' + run: | + virtualenv vEnv --system-site-packages + source vEnv/bin/activate + pip install dist/* + + pl_ver=$(python -c "import pytorch_lightning as pl ; print(pl.__version__)" 2>&1) + # generate checkpoint to this version + bash legacy/generate_checkpoints.sh $pl_ver + + deactivate + rm -rf vEnv + + - name: Push files to S3 + run: | + aws s3 sync legacy/checkpoints/ s3://pl-public-data/legacy/checkpoints/ + cd legacy + zip -r checkpoints.zip checkpoints + aws s3 cp checkpoints.zip s3://pl-public-data/legacy/ --acl public-read diff --git a/.gitignore b/.gitignore index 237dbef370..65ff649c43 100644 --- a/.gitignore +++ b/.gitignore @@ -27,6 +27,7 @@ timit_data/ # C extensions *.so +# PyCharm .idea/ # Distribution / packaging @@ -126,11 +127,14 @@ ENV/ # mypy .mypy_cache/ +# pytest +.pytest_cache/ # data .data/ Datasets/ mnist/ +legacy/checkpoints/ # pl tests ml-runs/ diff --git a/MANIFEST.in b/MANIFEST.in index 450a9ec576..95672548f7 100644 --- a/MANIFEST.in +++ b/MANIFEST.in @@ -69,3 +69,4 @@ prune temp* prune test* prune benchmark* prune dockers +prune legacy diff --git a/dockers/base-conda/Dockerfile b/dockers/base-conda/Dockerfile index 2d1c166c20..27ac96f96e 100644 --- a/dockers/base-conda/Dockerfile +++ b/dockers/base-conda/Dockerfile @@ -39,7 +39,9 @@ RUN apt-get update -qq && \ build-essential \ cmake \ git \ + wget \ curl \ + unzip \ ca-certificates \ && \ diff --git a/dockers/base-cuda/Dockerfile b/dockers/base-cuda/Dockerfile index bde54b8da7..d84cba8b4c 100644 --- a/dockers/base-cuda/Dockerfile +++ b/dockers/base-cuda/Dockerfile @@ -44,6 +44,8 @@ RUN apt-get update -qq && \ cmake \ git \ wget \ + curl \ + unzip \ ca-certificates \ software-properties-common \ && \ diff --git a/dockers/tpu-tests/Dockerfile b/dockers/tpu-tests/Dockerfile index 4e83bdcb0d..93d6244121 100644 --- a/dockers/tpu-tests/Dockerfile +++ b/dockers/tpu-tests/Dockerfile @@ -23,6 +23,12 @@ MAINTAINER PyTorchLightning COPY ./ ./pytorch-lightning/ +# Pull the legacy checkpoints +RUN cd pytorch-lightning && \ + wget https://pl-public-data.s3.amazonaws.com/legacy/checkpoints.zip -P legacy/ && \ + unzip -o legacy/checkpoints.zip -d legacy/ && \ + ls -l legacy/checkpoints/ + # If using this image for tests, intall more dependencies and don"t delete the source code where the tests live. RUN \ # Install pytorch-lightning at the current PR, plus dependencies. diff --git a/legacy/checkpoints/.gitkeep b/legacy/checkpoints/.gitkeep new file mode 100644 index 0000000000..e69de29bb2 diff --git a/legacy/generate_checkpoints.sh b/legacy/generate_checkpoints.sh new file mode 100644 index 0000000000..c9f4dabff4 --- /dev/null +++ b/legacy/generate_checkpoints.sh @@ -0,0 +1,40 @@ +#!/bin/bash +# Sample call: +# bash generate_checkpoints.sh 1.0.2 1.0.3 1.0.4 + +LEGACY_PATH="$( cd "$(dirname "$0")" >/dev/null 2>&1 ; pwd -P )" + +echo $LEGACY_PATH +# install some PT version here so it does not need to reinstalled for each env +pip install virtualenv "torch==1.5" --quiet --no-cache-dir + +ENV_PATH="$LEGACY_PATH/vEnv" + +# iterate over all arguments assuming that each argument is version +for ver in "$@" +do + echo "processing version: $ver" + # mkdir "$LEGACY_PATH/$ver" + + # create local env + echo $ENV_PATH + virtualenv $ENV_PATH --system-site-packages + # activate and install PL version + source "$ENV_PATH/bin/activate" + pip install "pytorch_lightning==$ver" --quiet -U --no-cache-dir + + python --version + pip --version + pip list | grep torch + + python "$LEGACY_PATH/zero_training.py" + cp "$LEGACY_PATH/zero_training.py" ${LEGACY_PATH}/checkpoints/${ver} + + mv ${LEGACY_PATH}/checkpoints/${ver}/lightning_logs/version_0/checkpoints/*.ckpt ${LEGACY_PATH}/checkpoints/${ver}/ + rm -rf ${LEGACY_PATH}/checkpoints/${ver}/lightning_logs + + deactivate + # clear env + rm -rf $ENV_PATH + +done diff --git a/legacy/zero_training.py b/legacy/zero_training.py new file mode 100644 index 0000000000..4e4952a3bb --- /dev/null +++ b/legacy/zero_training.py @@ -0,0 +1,92 @@ +# Copyright The PyTorch Lightning team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import os + +import torch +from torch.utils.data import Dataset + +import pytorch_lightning as pl + +PATH_LEGACY = os.path.dirname(__file__) + + +class RandomDataset(Dataset): + def __init__(self, size, length: int = 100): + self.len = length + self.data = torch.randn(length, size) + + def __getitem__(self, index): + return self.data[index] + + def __len__(self): + return self.len + + +class DummyModel(pl.LightningModule): + + def __init__(self): + super().__init__() + self.layer = torch.nn.Linear(32, 2) + + def forward(self, x): + return self.layer(x) + + def _loss(self, batch, prediction): + # An arbitrary loss to have a loss that updates the model weights during `Trainer.fit` calls + return torch.nn.functional.mse_loss(prediction, torch.ones_like(prediction)) + + def _step(self, batch, batch_idx): + output = self.layer(batch) + loss = self._loss(batch, output) + return loss + + def training_step(self, batch, batch_idx): + return self._step(batch, batch_idx) + + def validation_step(self, batch, batch_idx): + self._step(batch, batch_idx) + + def test_step(self, batch, batch_idx): + self._step(batch, batch_idx) + + def configure_optimizers(self): + optimizer = torch.optim.SGD(self.layer.parameters(), lr=0.1) + lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1) + return [optimizer], [lr_scheduler] + + def train_dataloader(self): + return torch.utils.data.DataLoader(RandomDataset(32, 64)) + + def val_dataloader(self): + return torch.utils.data.DataLoader(RandomDataset(32, 64)) + + def test_dataloader(self): + return torch.utils.data.DataLoader(RandomDataset(32, 64)) + + +def main_train(dir_path, max_epochs: int = 5): + + trainer = pl.Trainer( + default_root_dir=dir_path, + checkpoint_callback=True, + max_epochs=max_epochs, + ) + + model = DummyModel() + trainer.fit(model) + + +if __name__ == '__main__': + path_dir = os.path.join(PATH_LEGACY, 'checkpoints', str(pl.__version__)) + main_train(path_dir) diff --git a/setup.py b/setup.py index 961540fb96..2993c96c23 100755 --- a/setup.py +++ b/setup.py @@ -69,7 +69,7 @@ setup( url=pytorch_lightning.__homepage__, download_url='https://github.com/PyTorchLightning/pytorch-lightning', license=pytorch_lightning.__license__, - packages=find_packages(exclude=['tests', 'tests/*', 'benchmarks']), + packages=find_packages(exclude=['tests', 'tests/*', 'benchmarks', 'legacy', 'legacy/*']), long_description=_load_readme_description(PATH_ROOT), long_description_content_type='text/markdown', diff --git a/tests/__init__.py b/tests/__init__.py index e0ec83a2ef..57feda6280 100644 --- a/tests/__init__.py +++ b/tests/__init__.py @@ -18,6 +18,8 @@ import numpy as np _TEST_ROOT = os.path.dirname(__file__) _PROJECT_ROOT = os.path.dirname(_TEST_ROOT) _TEMP_PATH = os.path.join(_PROJECT_ROOT, 'test_temp') +DATASETS_PATH = os.path.join(_PROJECT_ROOT, 'Datasets') +LEGACY_PATH = os.path.join(_PROJECT_ROOT, 'legacy') # todo: this setting `PYTHONPATH` may not be used by other evns like Conda for import packages if _PROJECT_ROOT not in os.getenv('PYTHONPATH', ""): diff --git a/tests/checkpointing/test_legacy_checkpoints.py b/tests/checkpointing/test_legacy_checkpoints.py new file mode 100644 index 0000000000..cb9fe443a3 --- /dev/null +++ b/tests/checkpointing/test_legacy_checkpoints.py @@ -0,0 +1,54 @@ +# Copyright The PyTorch Lightning team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import glob +import os +import sys + +import pytest + +from pytorch_lightning import Trainer +from tests import LEGACY_PATH + +LEGACY_CHECKPOINTS_PATH = os.path.join(LEGACY_PATH, 'checkpoints') +CHECKPOINT_EXTENSION = ".ckpt" + + +# todo: add more legacy checkpoints :] +@pytest.mark.parametrize("pl_version", [ + "0.10.0", "1.0.0", "1.0.1", "1.0.2", "1.0.3", "1.0.4", "1.0.5", "1.0.6", "1.0.7", "1.0.8" +]) +def test_resume_legacy_checkpoints(tmpdir, pl_version): + path_dir = os.path.join(LEGACY_CHECKPOINTS_PATH, pl_version) + + # todo: make this as mock, so it is cleaner... + orig_sys_paths = list(sys.path) + sys.path.insert(0, path_dir) + from zero_training import DummyModel + + path_ckpts = sorted(glob.glob(os.path.join(path_dir, f'*{CHECKPOINT_EXTENSION}'))) + assert path_ckpts, 'No checkpoints found in folder "%s"' % path_dir + path_ckpt = path_ckpts[-1] + + model = DummyModel.load_from_checkpoint(path_ckpt) + trainer = Trainer(default_root_dir=tmpdir, max_epochs=6) + result = trainer.fit(model) + assert result + + # todo + # model = DummyModel() + # trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, resume_from_checkpoint=path_ckpt) + # result = trainer.fit(model) + # assert result + + sys.path = orig_sys_paths