diff --git a/.azure-pipelines/gpu-tests.yml b/.azure-pipelines/gpu-tests.yml index 89dbb8944a..211d6e852b 100644 --- a/.azure-pipelines/gpu-tests.yml +++ b/.azure-pipelines/gpu-tests.yml @@ -106,10 +106,11 @@ jobs: - script: | set -e - python -m pytest pl_examples -v --maxfail=2 --durations=0 - bash pl_examples/run_examples.sh --trainer.accelerator=gpu --trainer.devices=1 - bash pl_examples/run_examples.sh --trainer.accelerator=gpu --trainer.devices=2 --trainer.strategy=ddp - bash pl_examples/run_examples.sh --trainer.accelerator=gpu --trainer.devices=2 --trainer.strategy=ddp --trainer.precision=16 + bash run_ddp_examples.sh + bash run_pl_examples.sh --trainer.accelerator=gpu --trainer.devices=1 + bash run_pl_examples.sh --trainer.accelerator=gpu --trainer.devices=2 --trainer.strategy=ddp + bash run_pl_examples.sh --trainer.accelerator=gpu --trainer.devices=2 --trainer.strategy=ddp --trainer.precision=16 + workingDirectory: examples env: PL_USE_MOCKED_MNIST: "1" displayName: 'Testing: examples' diff --git a/.azure-pipelines/hpu-tests.yml b/.azure-pipelines/hpu-tests.yml index cc37259554..5d3973eae5 100644 --- a/.azure-pipelines/hpu-tests.yml +++ b/.azure-pipelines/hpu-tests.yml @@ -49,7 +49,8 @@ jobs: - bash: | export PYTHONPATH="${PYTHONPATH}:$(pwd)" - python "pl_examples/hpu_examples/simple_mnist/mnist.py" + python "pl_hpu/mnist_sample.py" + workingDirectory: examples displayName: 'Testing: HPU examples' - task: PublishTestResults@2 diff --git a/.github/ISSUE_TEMPLATE/bug_report.md b/.github/ISSUE_TEMPLATE/bug_report.md index d1b47ccb71..73f09d8bf3 100644 --- a/.github/ISSUE_TEMPLATE/bug_report.md +++ b/.github/ISSUE_TEMPLATE/bug_report.md @@ -16,11 +16,11 @@ assignees: '' Please reproduce using the BoringModel! You can use the following Colab link: -https://colab.research.google.com/github/PytorchLightning/pytorch-lightning/blob/master/pl_examples/bug_report/bug_report_model.ipynb +https://colab.research.google.com/github/PytorchLightning/pytorch-lightning/blob/master/examples/pl_bug_report/bug_report_model.ipynb IMPORTANT: has to be public. or this simple template: -https://github.com/PyTorchLightning/pytorch-lightning/blob/master/pl_examples/bug_report/bug_report_model.py +https://github.com/PyTorchLightning/pytorch-lightning/blob/master/examples/pl_bug_report/bug_report_model.py If you could not reproduce using the BoringModel and still think there's a bug, please post here but remember, bugs with code are fixed faster! diff --git a/.github/workflows/ci_test-full.yml b/.github/workflows/ci_test-full.yml index 9911086d72..469edc45fb 100644 --- a/.github/workflows/ci_test-full.yml +++ b/.github/workflows/ci_test-full.yml @@ -127,13 +127,6 @@ jobs: # NOTE: do not include coverage report here, see: https://github.com/nedbat/coveragepy/issues/1003 coverage run --source pytorch_lightning -m pytest tests -v --durations=50 --junitxml=junit/test-results-${{ runner.os }}-py${{ matrix.python-version }}-${{ matrix.requires }}-${{ matrix.release }}.xml - - name: Examples - run: | - # adjust versions according installed Torch version - python ./requirements/adjust-versions.py requirements/examples.txt - pip install -r requirements/examples.txt --find-links https://download.pytorch.org/whl/cpu/torch_stable.html --upgrade - python -m pytest pl_examples -v --durations=10 - - name: Upload pytest results uses: actions/upload-artifact@v2 with: @@ -142,6 +135,16 @@ jobs: if-no-files-found: error if: failure() + - name: Prepare Examples + run: | + # adjust versions according installed Torch version + python ./requirements/adjust-versions.py requirements/examples.txt + pip install -r requirements/examples.txt --find-links https://download.pytorch.org/whl/cpu/torch_stable.html --upgrade + + - name: Run Examples + working-directory: ./examples + run: python -m pytest test_pl_examples.py -v --durations=10 + - name: Statistics if: success() run: | diff --git a/Makefile b/Makefile index 6402474af2..0cff9892c0 100644 --- a/Makefile +++ b/Makefile @@ -26,7 +26,7 @@ test: clean pip install -r requirements/devel.txt pip install -r requirements/strategies.txt # run tests with coverage - python -m coverage run --source pytorch_lightning -m pytest pytorch_lightning tests pl_examples -v + python -m coverage run --source pytorch_lightning -m pytest pytorch_lightning tests -v python -m coverage report docs: clean diff --git a/dockers/nvidia/Dockerfile b/dockers/nvidia/Dockerfile index 6848f6cf34..f23fd4d240 100644 --- a/dockers/nvidia/Dockerfile +++ b/dockers/nvidia/Dockerfile @@ -38,7 +38,7 @@ RUN \ fi && \ # save the examples mv pytorch-lightning/_notebooks/.notebooks/ notebooks && \ - mv pytorch-lightning/pl_examples . && \ + mv pytorch-lightning/examples . && \ # Installations \ pip install -q fire && \ diff --git a/dockers/release/Dockerfile b/dockers/release/Dockerfile index 39da851e92..1a7726227d 100644 --- a/dockers/release/Dockerfile +++ b/dockers/release/Dockerfile @@ -27,7 +27,7 @@ COPY ./ /home/pytorch-lightning/ RUN \ cd /home && \ mv pytorch-lightning/_notebooks notebooks && \ - mv pytorch-lightning/pl_examples . && \ + mv pytorch-lightning/examples . && \ # replace by specific version if asked if [ ! -z "$LIGHTNING_VERSION" ] ; then \ rm -rf pytorch-lightning ; \ diff --git a/docs/source/accelerators/hpu_intermediate.rst b/docs/source/accelerators/hpu_intermediate.rst index 65dca85479..0e08683211 100644 --- a/docs/source/accelerators/hpu_intermediate.rst +++ b/docs/source/accelerators/hpu_intermediate.rst @@ -45,7 +45,7 @@ This enables advanced users to provide their own BF16 and FP32 operator list ins accelerator="hpu", devices=1, # Optional Habana mixed precision params to be set - # Checkout `pl_examples/hpu_examples/simple_mnist/ops_bf16_mnist.txt` for the format + # Checkout `examples/pl_hpu/ops_bf16_mnist.txt` for the format plugins=[ HPUPrecisionPlugin( precision=16, diff --git a/docs/source/accelerators/ipu_basic.rst b/docs/source/accelerators/ipu_basic.rst index 492c7bf27a..523b000a35 100644 --- a/docs/source/accelerators/ipu_basic.rst +++ b/docs/source/accelerators/ipu_basic.rst @@ -60,7 +60,7 @@ Known limitations Currently there are some known limitations that are being addressed in the near future to make the experience seamless when moving from different devices. -Please see the `MNIST example `__ which displays most of the limitations and how to overcome them till they are resolved. +Please see the `MNIST example `__ which displays most of the limitations and how to overcome them till they are resolved. * ``self.log`` is not supported in the ``training_step``, ``validation_step``, ``test_step`` or ``predict_step``. This is due to the step function being traced and sent to the IPU devices. We're actively working on fixing this * Multiple optimizers are not supported. ``training_step`` only supports returning one loss from the ``training_step`` function as a result diff --git a/docs/source/clouds/cluster_advanced.rst b/docs/source/clouds/cluster_advanced.rst index bb15cbbe18..5999b17b39 100644 --- a/docs/source/clouds/cluster_advanced.rst +++ b/docs/source/clouds/cluster_advanced.rst @@ -134,7 +134,7 @@ in a `HyperOptArgumentParser Here is an example where you run a grid search of 9 combinations of hyperparameters. See also the multi-node examples -`here `__. +`here `__. .. code-block:: python diff --git a/docs/source/clouds/fault_tolerant_training_faq.rst b/docs/source/clouds/fault_tolerant_training_faq.rst index 4f2bdf436a..5501d76b0b 100644 --- a/docs/source/clouds/fault_tolerant_training_faq.rst +++ b/docs/source/clouds/fault_tolerant_training_faq.rst @@ -93,7 +93,7 @@ If you believe this to be useful, please open a `feature request `_ +On tiny models like the `BoringModel and RandomDataset `_ which has virtually no data loading and processing overhead, we noticed up to 50% longer training time with fault tolerance enabled. In this worst-case scenario, fault-tolerant adds an overhead that is noticeable in comparison to the compute time for dataloading itself. However, for more realistic training workloads where data loading and preprocessing is more expensive, the constant overhead that fault tolerance adds becomes less noticeable or not noticeable at all. diff --git a/docs/source/extensions/loops.rst b/docs/source/extensions/loops.rst index bb5c701900..48c803e64c 100644 --- a/docs/source/extensions/loops.rst +++ b/docs/source/extensions/loops.rst @@ -441,12 +441,12 @@ Advanced Examples * - Link to Example - Description - * - `K-fold Cross Validation `_ + * - `K-fold Cross Validation `_ - `KFold / Cross Validation `__ is a machine learning practice in which the training dataset is being partitioned into ``num_folds`` complementary subsets. One cross validation round will perform fitting where one fold is left out for validation and the other folds are used for training. To reduce variability, once all rounds are performed using the different folds, the trained models are ensembled and their predictions are averaged when estimating the model's predictive performance on the test dataset. - * - `Yielding Training Step `_ + * - `Yielding Training Step `_ - This loop enables you to write the :meth:`~pytorch_lightning.core.module.LightningModule.training_step` hook as a Python Generator for automatic optimization with multiple optimizers, i.e., you can :code:`yield` loss values from it instead of returning them. This can enable more elegant and expressive implementations, as shown diff --git a/docs/source/starter/lightning_lite.rst b/docs/source/starter/lightning_lite.rst index 36deb507b9..1941e9a5cc 100644 --- a/docs/source/starter/lightning_lite.rst +++ b/docs/source/starter/lightning_lite.rst @@ -123,7 +123,7 @@ Here are five required steps to convert to :class:`~pytorch_lightning.lite.Light Lite(...).run(args) -That's all. You can now train on any kind of device and scale your training. Check out `this `_ full MNIST training example with LightningLite. +That's all. You can now train on any kind of device and scale your training. Check out `this `_ full MNIST training example with LightningLite. :class:`~pytorch_lightning.lite.LightningLite` takes care of device management, so you don't have to. You should remove any device-specific logic within your code. diff --git a/examples/README.md b/examples/README.md new file mode 100644 index 0000000000..e16a8bfcf1 --- /dev/null +++ b/examples/README.md @@ -0,0 +1,53 @@ +# Examples + +Our most robust examples showing all sorts of implementations +can be found in our sister library [Lightning Bolts](https://pytorch-lightning.readthedocs.io/en/latest/ecosystem/bolts.html). + +______________________________________________________________________ + +## MNIST Examples + +5 MNIST examples showing how to gradually convert from pure PyTorch to PyTorch Lightning. + +The transition through [LightningLite](https://pytorch-lightning.readthedocs.io/en/latest/starter/lightning_lite.html) from pure PyTorch is optional, but it might be helpful to learn about it. + +- [MNIST with vanilla PyTorch](convert_from_pt_to_pl/image_classifier_1_pytorch.py) +- [MNIST with LightningLite](convert_from_pt_to_pl/image_classifier_2_lite.py) +- [MNIST LightningLite to LightningModule](convert_from_pt_to_pl/image_classifier_3_lite_to_lightning_module.py) +- [MNIST with LightningModule](convert_from_pt_to_pl/image_classifier_4_lightning_module.py) +- [MNIST with LightningModule + LightningDataModule](convert_from_pt_to_pl/image_classifier_5_lightning_datamodule.py) + +______________________________________________________________________ + +## Basic Examples + +In this folder, we have 2 simple examples: + +- [Image Classifier](pl_basics/backbone_image_classifier.py) (trains arbitrary datasets with arbitrary backbones). +- [Image Classifier + DALI](convert_from_pt_to_pl/image_classifier_4_dali.py) (defines the model inside the `LightningModule`). +- [Autoencoder](pl_basics/autoencoder.py) + +______________________________________________________________________ + +## Domain Examples + +This folder contains older examples. You should instead use the examples +in [Lightning Bolts](https://pytorch-lightning.readthedocs.io/en/latest/ecosystem/bolts.html) +for advanced use cases. + +______________________________________________________________________ + +## Basic Examples + +In this folder, we have 1 simple example: + +- [Image Classifier + DALI](pl_integrations/dali_image_classifier.py) (defines the model inside the `LightningModule`). + +______________________________________________________________________ + +## Loop examples + +Contains implementations leveraging [loop customization](https://pytorch-lightning.readthedocs.io/en/latest/extensions/loops.html) to enhance the Trainer with new optimization routines. + +- [K-fold Cross Validation Loop](pl_loops/kfold.py): Implementation of cross validation in a loop and special datamodule. +- [Yield Loop](pl_loops/yielding_training_step.py): Enables yielding from the training_step like in a Python generator. Useful for automatic optimization with multiple optimizers. diff --git a/pl_examples/basic_examples/mnist_examples/README.md b/examples/convert_from_pt_to_pl/README.md similarity index 100% rename from pl_examples/basic_examples/mnist_examples/README.md rename to examples/convert_from_pt_to_pl/README.md diff --git a/pl_examples/basic_examples/mnist_examples/image_classifier_1_pytorch.py b/examples/convert_from_pt_to_pl/image_classifier_1_pytorch.py similarity index 83% rename from pl_examples/basic_examples/mnist_examples/image_classifier_1_pytorch.py rename to examples/convert_from_pt_to_pl/image_classifier_1_pytorch.py index 4073c485e6..47cbb90c20 100644 --- a/pl_examples/basic_examples/mnist_examples/image_classifier_1_pytorch.py +++ b/examples/convert_from_pt_to_pl/image_classifier_1_pytorch.py @@ -12,44 +12,20 @@ # See the License for the specific language governing permissions and # limitations under the License. import argparse +from os import path import torch -import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torchvision.transforms as T from torch.optim.lr_scheduler import StepLR -from pl_examples.basic_examples.mnist_datamodule import MNIST - # Credit to the PyTorch Team # Taken from https://github.com/pytorch/examples/blob/master/mnist/main.py and slightly adapted. +from pytorch_lightning.demos.boring_classes import Net +from pytorch_lightning.demos.mnist_datamodule import MNIST - -class Net(nn.Module): - def __init__(self): - super().__init__() - self.conv1 = nn.Conv2d(1, 32, 3, 1) - self.conv2 = nn.Conv2d(32, 64, 3, 1) - self.dropout1 = nn.Dropout(0.25) - self.dropout2 = nn.Dropout(0.5) - self.fc1 = nn.Linear(9216, 128) - self.fc2 = nn.Linear(128, 10) - - def forward(self, x): - x = self.conv1(x) - x = F.relu(x) - x = self.conv2(x) - x = F.relu(x) - x = F.max_pool2d(x, 2) - x = self.dropout1(x) - x = torch.flatten(x, 1) - x = self.fc1(x) - x = F.relu(x) - x = self.dropout2(x) - x = self.fc2(x) - output = F.log_softmax(x, dim=1) - return output +DATASETS_PATH = path.join(path.dirname(__file__), "..", "..", "Datasets") def run(hparams): @@ -60,8 +36,8 @@ def run(hparams): device = torch.device("cuda" if use_cuda else "cpu") transform = T.Compose([T.ToTensor(), T.Normalize((0.1307,), (0.3081,))]) - train_dataset = MNIST("./data", train=True, download=True, transform=transform) - test_dataset = MNIST("./data", train=False, transform=transform) + train_dataset = MNIST(DATASETS_PATH, train=True, download=True, transform=transform) + test_dataset = MNIST(DATASETS_PATH, train=False, transform=transform) train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=hparams.batch_size, diff --git a/pl_examples/basic_examples/mnist_examples/image_classifier_2_lite.py b/examples/convert_from_pt_to_pl/image_classifier_2_lite.py similarity index 94% rename from pl_examples/basic_examples/mnist_examples/image_classifier_2_lite.py rename to examples/convert_from_pt_to_pl/image_classifier_2_lite.py index db310b8280..da82db0328 100644 --- a/pl_examples/basic_examples/mnist_examples/image_classifier_2_lite.py +++ b/examples/convert_from_pt_to_pl/image_classifier_2_lite.py @@ -29,6 +29,7 @@ Learn more from the documentation: https://pytorch-lightning.readthedocs.io/en/l """ import argparse +from os import path import torch import torch.nn.functional as F @@ -37,11 +38,13 @@ import torchvision.transforms as T from torch.optim.lr_scheduler import StepLR from torchmetrics.classification import Accuracy -from pl_examples.basic_examples.mnist_datamodule import MNIST -from pl_examples.basic_examples.mnist_examples.image_classifier_1_pytorch import Net from pytorch_lightning import seed_everything +from pytorch_lightning.demos.boring_classes import Net +from pytorch_lightning.demos.mnist_datamodule import MNIST from pytorch_lightning.lite import LightningLite # import LightningLite +DATASETS_PATH = path.join(path.dirname(__file__), "..", "..", "Datasets") + class Lite(LightningLite): def run(self, hparams): @@ -51,10 +54,10 @@ class Lite(LightningLite): transform = T.Compose([T.ToTensor(), T.Normalize((0.1307,), (0.3081,))]) # This is meant to ensure the data are download only by 1 process. if self.is_global_zero: - MNIST("./data", download=True) + MNIST(DATASETS_PATH, download=True) self.barrier() - train_dataset = MNIST("./data", train=True, transform=transform) - test_dataset = MNIST("./data", train=False, transform=transform) + train_dataset = MNIST(DATASETS_PATH, train=True, transform=transform) + test_dataset = MNIST(DATASETS_PATH, train=False, transform=transform) train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=hparams.batch_size, diff --git a/pl_examples/basic_examples/mnist_examples/image_classifier_3_lite_to_lightning_module.py b/examples/convert_from_pt_to_pl/image_classifier_3_lite_to_lightning_module.py similarity index 93% rename from pl_examples/basic_examples/mnist_examples/image_classifier_3_lite_to_lightning_module.py rename to examples/convert_from_pt_to_pl/image_classifier_3_lite_to_lightning_module.py index 0d6925fc68..d2dc9a581b 100644 --- a/pl_examples/basic_examples/mnist_examples/image_classifier_3_lite_to_lightning_module.py +++ b/examples/convert_from_pt_to_pl/image_classifier_3_lite_to_lightning_module.py @@ -25,6 +25,7 @@ Learn more from the documentation: https://pytorch-lightning.readthedocs.io/en/l """ import argparse +from os import path import torch import torch.nn.functional as F @@ -33,11 +34,13 @@ import torchvision.transforms as T from torch.optim.lr_scheduler import StepLR from torchmetrics import Accuracy -from pl_examples.basic_examples.mnist_datamodule import MNIST -from pl_examples.basic_examples.mnist_examples.image_classifier_1_pytorch import Net from pytorch_lightning import seed_everything +from pytorch_lightning.demos.boring_classes import Net +from pytorch_lightning.demos.mnist_datamodule import MNIST from pytorch_lightning.lite import LightningLite +DATASETS_PATH = path.join(path.dirname(__file__), "..", "..", "Datasets") + class Lite(LightningLite): """Lite is starting to look like a LightningModule.""" @@ -135,14 +138,14 @@ class Lite(LightningLite): return T.Compose([T.ToTensor(), T.Normalize((0.1307,), (0.3081,))]) def prepare_data(self) -> None: - MNIST("./data", download=True) + MNIST(DATASETS_PATH, download=True) def train_dataloader(self): - train_dataset = MNIST("./data", train=True, download=False, transform=self.transform) + train_dataset = MNIST(DATASETS_PATH, train=True, download=False, transform=self.transform) return torch.utils.data.DataLoader(train_dataset, batch_size=self.hparams.batch_size) def test_dataloader(self): - test_dataset = MNIST("./data", train=False, download=False, transform=self.transform) + test_dataset = MNIST(DATASETS_PATH, train=False, download=False, transform=self.transform) return torch.utils.data.DataLoader(test_dataset, batch_size=self.hparams.batch_size) diff --git a/pl_examples/basic_examples/mnist_examples/image_classifier_4_lightning_module.py b/examples/convert_from_pt_to_pl/image_classifier_4_lightning_module.py similarity index 84% rename from pl_examples/basic_examples/mnist_examples/image_classifier_4_lightning_module.py rename to examples/convert_from_pt_to_pl/image_classifier_4_lightning_module.py index cdd58e7d38..ec7ff5edb2 100644 --- a/pl_examples/basic_examples/mnist_examples/image_classifier_4_lightning_module.py +++ b/examples/convert_from_pt_to_pl/image_classifier_4_lightning_module.py @@ -15,17 +15,20 @@ To run: python image_classifier_4_lightning_module.py --trainer.max_epochs=50 """ +from os import path + import torch import torchvision.transforms as T from torch.nn import functional as F from torchmetrics import Accuracy -from pl_examples import cli_lightning_logo -from pl_examples.basic_examples.mnist_datamodule import MNIST -from pl_examples.basic_examples.mnist_examples.image_classifier_1_pytorch import Net -from pytorch_lightning import LightningModule +from pytorch_lightning import cli_lightning_logo, LightningModule +from pytorch_lightning.demos.boring_classes import Net +from pytorch_lightning.demos.mnist_datamodule import MNIST from pytorch_lightning.utilities.cli import LightningCLI +DATASETS_PATH = path.join(path.dirname(__file__), "..", "..", "Datasets") + class ImageClassifier(LightningModule): def __init__(self, model=None, lr=1.0, gamma=0.7, batch_size=32): @@ -62,14 +65,14 @@ class ImageClassifier(LightningModule): return T.Compose([T.ToTensor(), T.Normalize((0.1307,), (0.3081,))]) def prepare_data(self) -> None: - MNIST("./data", download=True) + MNIST(DATASETS_PATH, download=True) def train_dataloader(self): - train_dataset = MNIST("./data", train=True, download=False, transform=self.transform) + train_dataset = MNIST(DATASETS_PATH, train=True, download=False, transform=self.transform) return torch.utils.data.DataLoader(train_dataset, batch_size=self.hparams.batch_size) def test_dataloader(self): - test_dataset = MNIST("./data", train=False, download=False, transform=self.transform) + test_dataset = MNIST(DATASETS_PATH, train=False, download=False, transform=self.transform) return torch.utils.data.DataLoader(test_dataset, batch_size=self.hparams.batch_size) diff --git a/pl_examples/basic_examples/mnist_examples/image_classifier_5_lightning_datamodule.py b/examples/convert_from_pt_to_pl/image_classifier_5_lightning_datamodule.py similarity index 84% rename from pl_examples/basic_examples/mnist_examples/image_classifier_5_lightning_datamodule.py rename to examples/convert_from_pt_to_pl/image_classifier_5_lightning_datamodule.py index f3fada03c1..3e1357e2df 100644 --- a/pl_examples/basic_examples/mnist_examples/image_classifier_5_lightning_datamodule.py +++ b/examples/convert_from_pt_to_pl/image_classifier_5_lightning_datamodule.py @@ -15,17 +15,20 @@ To run: python image_classifier_5_lightning_datamodule.py --trainer.max_epochs=50 """ +from os import path + import torch import torchvision.transforms as T from torch.nn import functional as F from torchmetrics import Accuracy -from pl_examples import cli_lightning_logo -from pl_examples.basic_examples.mnist_datamodule import MNIST -from pl_examples.basic_examples.mnist_examples.image_classifier_1_pytorch import Net -from pytorch_lightning import LightningDataModule, LightningModule +from pytorch_lightning import cli_lightning_logo, LightningDataModule, LightningModule +from pytorch_lightning.demos.boring_classes import Net +from pytorch_lightning.demos.mnist_datamodule import MNIST from pytorch_lightning.utilities.cli import LightningCLI +DATASETS_PATH = path.join(path.dirname(__file__), "..", "..", "Datasets") + class ImageClassifier(LightningModule): def __init__(self, model, lr=1.0, gamma=0.7, batch_size=32): @@ -66,14 +69,14 @@ class MNISTDataModule(LightningDataModule): return T.Compose([T.ToTensor(), T.Normalize((0.1307,), (0.3081,))]) def prepare_data(self) -> None: - MNIST("./data", download=True) + MNIST(DATASETS_PATH, download=True) def train_dataloader(self): - train_dataset = MNIST("./data", train=True, download=False, transform=self.transform) + train_dataset = MNIST(DATASETS_PATH, train=True, download=False, transform=self.transform) return torch.utils.data.DataLoader(train_dataset, batch_size=self.hparams.batch_size) def test_dataloader(self): - test_dataset = MNIST("./data", train=False, download=False, transform=self.transform) + test_dataset = MNIST(DATASETS_PATH, train=False, download=False, transform=self.transform) return torch.utils.data.DataLoader(test_dataset, batch_size=self.hparams.batch_size) diff --git a/pl_examples/basic_examples/README.md b/examples/pl_basics/README.md similarity index 100% rename from pl_examples/basic_examples/README.md rename to examples/pl_basics/README.md diff --git a/pl_examples/basic_examples/autoencoder.py b/examples/pl_basics/autoencoder.py similarity index 90% rename from pl_examples/basic_examples/autoencoder.py rename to examples/pl_basics/autoencoder.py index 496d7e6d9b..6fcbeafa4b 100644 --- a/pl_examples/basic_examples/autoencoder.py +++ b/examples/pl_basics/autoencoder.py @@ -15,6 +15,7 @@ To run: python autoencoder.py --trainer.max_epochs=50 """ +from os import path from typing import Optional, Tuple import torch @@ -22,9 +23,8 @@ import torch.nn.functional as F from torch import nn from torch.utils.data import DataLoader, random_split -import pytorch_lightning as pl -from pl_examples import _DATASETS_PATH, cli_lightning_logo -from pl_examples.basic_examples.mnist_datamodule import MNIST +from pytorch_lightning import callbacks, cli_lightning_logo, LightningDataModule, LightningModule, Trainer +from pytorch_lightning.demos.mnist_datamodule import MNIST from pytorch_lightning.utilities.cli import LightningCLI from pytorch_lightning.utilities.imports import _TORCHVISION_AVAILABLE from pytorch_lightning.utilities.rank_zero import rank_zero_only @@ -34,8 +34,10 @@ if _TORCHVISION_AVAILABLE: from torchvision import transforms from torchvision.utils import save_image +DATASETS_PATH = path.join(path.dirname(__file__), "..", "..", "Datasets") -class ImageSampler(pl.callbacks.Callback): + +class ImageSampler(callbacks.Callback): def __init__( self, num_samples: int = 3, @@ -85,7 +87,7 @@ class ImageSampler(pl.callbacks.Callback): ) @rank_zero_only - def on_train_epoch_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule) -> None: + def on_train_epoch_end(self, trainer: Trainer, pl_module: LightningModule) -> None: if not _TORCHVISION_AVAILABLE: return @@ -103,7 +105,7 @@ class ImageSampler(pl.callbacks.Callback): save_image(self._to_grid(images_generated.reshape(images.shape)), f"grid_generated_{trainer.current_epoch}.png") -class LitAutoEncoder(pl.LightningModule): +class LitAutoEncoder(LightningModule): """ >>> LitAutoEncoder() # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE LitAutoEncoder( @@ -150,11 +152,11 @@ class LitAutoEncoder(pl.LightningModule): return loss -class MyDataModule(pl.LightningDataModule): +class MyDataModule(LightningDataModule): def __init__(self, batch_size: int = 32): super().__init__() - dataset = MNIST(_DATASETS_PATH, train=True, download=True, transform=transforms.ToTensor()) - self.mnist_test = MNIST(_DATASETS_PATH, train=False, download=True, transform=transforms.ToTensor()) + dataset = MNIST(DATASETS_PATH, train=True, download=True, transform=transforms.ToTensor()) + self.mnist_test = MNIST(DATASETS_PATH, train=False, download=True, transform=transforms.ToTensor()) self.mnist_train, self.mnist_val = random_split(dataset, [55000, 5000]) self.batch_size = batch_size diff --git a/pl_examples/basic_examples/backbone_image_classifier.py b/examples/pl_basics/backbone_image_classifier.py similarity index 88% rename from pl_examples/basic_examples/backbone_image_classifier.py rename to examples/pl_basics/backbone_image_classifier.py index 1f279ca85b..be9a255cf9 100644 --- a/pl_examples/basic_examples/backbone_image_classifier.py +++ b/examples/pl_basics/backbone_image_classifier.py @@ -15,21 +15,23 @@ To run: python backbone_image_classifier.py --trainer.max_epochs=50 """ +from os import path from typing import Optional import torch from torch.nn import functional as F from torch.utils.data import DataLoader, random_split -import pytorch_lightning as pl -from pl_examples import _DATASETS_PATH, cli_lightning_logo -from pl_examples.basic_examples.mnist_datamodule import MNIST +from pytorch_lightning import cli_lightning_logo, LightningDataModule, LightningModule +from pytorch_lightning.demos.mnist_datamodule import MNIST from pytorch_lightning.utilities.cli import LightningCLI from pytorch_lightning.utilities.imports import _TORCHVISION_AVAILABLE if _TORCHVISION_AVAILABLE: from torchvision import transforms +DATASETS_PATH = path.join(path.dirname(__file__), "..", "..", "Datasets") + class Backbone(torch.nn.Module): """ @@ -52,7 +54,7 @@ class Backbone(torch.nn.Module): return x -class LitClassifier(pl.LightningModule): +class LitClassifier(LightningModule): """ >>> LitClassifier(Backbone()) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE LitClassifier( @@ -100,11 +102,11 @@ class LitClassifier(pl.LightningModule): return torch.optim.Adam(self.parameters(), lr=self.hparams.learning_rate) -class MyDataModule(pl.LightningDataModule): +class MyDataModule(LightningDataModule): def __init__(self, batch_size: int = 32): super().__init__() - dataset = MNIST(_DATASETS_PATH, train=True, download=True, transform=transforms.ToTensor()) - self.mnist_test = MNIST(_DATASETS_PATH, train=False, download=True, transform=transforms.ToTensor()) + dataset = MNIST(DATASETS_PATH, train=True, download=True, transform=transforms.ToTensor()) + self.mnist_test = MNIST(DATASETS_PATH, train=False, download=True, transform=transforms.ToTensor()) self.mnist_train, self.mnist_val = random_split(dataset, [55000, 5000]) self.batch_size = batch_size diff --git a/pl_examples/basic_examples/profiler_example.py b/examples/pl_basics/profiler_example.py similarity index 90% rename from pl_examples/basic_examples/profiler_example.py rename to examples/pl_basics/profiler_example.py index 2d64af6147..8907454868 100644 --- a/pl_examples/basic_examples/profiler_example.py +++ b/examples/pl_basics/profiler_example.py @@ -23,14 +23,14 @@ visualized in 2 ways: """ import sys +from os import path import torch import torchvision import torchvision.models as models import torchvision.transforms as T -from pl_examples import _DATASETS_PATH, cli_lightning_logo -from pytorch_lightning import LightningDataModule, LightningModule +from pytorch_lightning import cli_lightning_logo, LightningDataModule, LightningModule from pytorch_lightning.profiler.pytorch import PyTorchProfiler from pytorch_lightning.utilities.cli import LightningCLI @@ -43,6 +43,7 @@ DEFAULT_CMD_LINE = ( "--trainer.accelerator=gpu", f"--trainer.devices={int(torch.cuda.is_available())}", ) +DATASETS_PATH = path.join(path.dirname(__file__), "..", "..", "Datasets") class ModelToProfile(LightningModule): @@ -93,13 +94,11 @@ class CIFAR10DataModule(LightningDataModule): transform = T.Compose([T.Resize(256), T.CenterCrop(224), T.ToTensor()]) def train_dataloader(self, *args, **kwargs): - trainset = torchvision.datasets.CIFAR10( - root=_DATASETS_PATH, train=True, download=True, transform=self.transform - ) + trainset = torchvision.datasets.CIFAR10(root=DATASETS_PATH, train=True, download=True, transform=self.transform) return torch.utils.data.DataLoader(trainset, batch_size=2, shuffle=True, num_workers=0) def val_dataloader(self, *args, **kwargs): - valset = torchvision.datasets.CIFAR10(root=_DATASETS_PATH, train=False, download=True, transform=self.transform) + valset = torchvision.datasets.CIFAR10(root=DATASETS_PATH, train=False, download=True, transform=self.transform) return torch.utils.data.DataLoader(valset, batch_size=2, shuffle=True, num_workers=0) diff --git a/pl_examples/bug_report/bug_report_model.ipynb b/examples/pl_bug_report/bug_report_model.ipynb similarity index 100% rename from pl_examples/bug_report/bug_report_model.ipynb rename to examples/pl_bug_report/bug_report_model.ipynb diff --git a/pl_examples/bug_report/bug_report_model.py b/examples/pl_bug_report/bug_report_model.py similarity index 100% rename from pl_examples/bug_report/bug_report_model.py rename to examples/pl_bug_report/bug_report_model.py diff --git a/pl_examples/domain_templates/computer_vision_fine_tuning.py b/examples/pl_domain_templates/computer_vision_fine_tuning.py similarity index 96% rename from pl_examples/domain_templates/computer_vision_fine_tuning.py rename to examples/pl_domain_templates/computer_vision_fine_tuning.py index cf38e5ee78..dc31d79ab0 100644 --- a/pl_examples/domain_templates/computer_vision_fine_tuning.py +++ b/examples/pl_domain_templates/computer_vision_fine_tuning.py @@ -54,9 +54,7 @@ from torchvision import models, transforms from torchvision.datasets import ImageFolder from torchvision.datasets.utils import download_and_extract_archive -import pytorch_lightning as pl -from pl_examples import cli_lightning_logo -from pytorch_lightning import LightningDataModule +from pytorch_lightning import cli_lightning_logo, LightningDataModule, LightningModule from pytorch_lightning.callbacks.finetuning import BaseFinetuning from pytorch_lightning.utilities.cli import LightningCLI from pytorch_lightning.utilities.rank_zero import rank_zero_info @@ -73,10 +71,10 @@ class MilestonesFinetuning(BaseFinetuning): self.milestones = milestones self.train_bn = train_bn - def freeze_before_training(self, pl_module: pl.LightningModule): + def freeze_before_training(self, pl_module: LightningModule): self.freeze(modules=pl_module.feature_extractor, train_bn=self.train_bn) - def finetune_function(self, pl_module: pl.LightningModule, epoch: int, optimizer: Optimizer, opt_idx: int): + def finetune_function(self, pl_module: LightningModule, epoch: int, optimizer: Optimizer, opt_idx: int): if epoch == self.milestones[0]: # unfreeze 5 last layers self.unfreeze_and_add_param_group( @@ -155,7 +153,7 @@ class CatDogImageDataModule(LightningDataModule): # --- Pytorch-lightning module --- -class TransferLearningModel(pl.LightningModule): +class TransferLearningModel(LightningModule): def __init__( self, backbone: str = "resnet50", diff --git a/pl_examples/domain_templates/generative_adversarial_net.py b/examples/pl_domain_templates/generative_adversarial_net.py similarity index 97% rename from pl_examples/domain_templates/generative_adversarial_net.py rename to examples/pl_domain_templates/generative_adversarial_net.py index cef2107550..75a0f33b46 100644 --- a/pl_examples/domain_templates/generative_adversarial_net.py +++ b/examples/pl_domain_templates/generative_adversarial_net.py @@ -24,9 +24,9 @@ import torch import torch.nn as nn import torch.nn.functional as F -from pl_examples import cli_lightning_logo -from pl_examples.basic_examples.mnist_datamodule import MNISTDataModule +from pytorch_lightning import cli_lightning_logo from pytorch_lightning.core import LightningModule +from pytorch_lightning.demos.mnist_datamodule import MNISTDataModule from pytorch_lightning.trainer import Trainer from pytorch_lightning.utilities.imports import _TORCHVISION_AVAILABLE @@ -130,7 +130,7 @@ class GAN(LightningModule): @staticmethod def add_argparse_args(parent_parser: ArgumentParser, *, use_argument_group=True): if use_argument_group: - parser = parent_parser.add_argument_group("pl.GAN") + parser = parent_parser.add_argument_group("GAN") parser_out = parent_parser else: parser = ArgumentParser(parents=[parent_parser], add_help=False) diff --git a/pl_examples/domain_templates/imagenet.py b/examples/pl_domain_templates/imagenet.py similarity index 100% rename from pl_examples/domain_templates/imagenet.py rename to examples/pl_domain_templates/imagenet.py diff --git a/pl_examples/domain_templates/reinforce_learn_Qnet.py b/examples/pl_domain_templates/reinforce_learn_Qnet.py similarity index 98% rename from pl_examples/domain_templates/reinforce_learn_Qnet.py rename to examples/pl_domain_templates/reinforce_learn_Qnet.py index 4bf53e8a3d..9fd212493b 100644 --- a/pl_examples/domain_templates/reinforce_learn_Qnet.py +++ b/examples/pl_domain_templates/reinforce_learn_Qnet.py @@ -44,8 +44,7 @@ from torch.optim.optimizer import Optimizer from torch.utils.data import DataLoader from torch.utils.data.dataset import IterableDataset -import pytorch_lightning as pl -from pl_examples import cli_lightning_logo +from pytorch_lightning import cli_lightning_logo, LightningModule, seed_everything, Trainer class DQN(nn.Module): @@ -212,7 +211,7 @@ class Agent: return reward, done -class DQNLightning(pl.LightningModule): +class DQNLightning(LightningModule): """Basic DQN Model. >>> DQNLightning(env="CartPole-v1") # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE @@ -391,15 +390,14 @@ class DQNLightning(pl.LightningModule): def main(args) -> None: model = DQNLightning(**vars(args)) - trainer = pl.Trainer(accelerator="gpu", devices=1, strategy="dp", val_check_interval=100) + trainer = Trainer(accelerator="gpu", devices=1, strategy="dp", val_check_interval=100) trainer.fit(model) if __name__ == "__main__": cli_lightning_logo() - torch.manual_seed(0) - np.random.seed(0) + seed_everything(0) parser = argparse.ArgumentParser(add_help=False) parser = DQNLightning.add_model_specific_args(parser) diff --git a/pl_examples/domain_templates/reinforce_learn_ppo.py b/examples/pl_domain_templates/reinforce_learn_ppo.py similarity index 98% rename from pl_examples/domain_templates/reinforce_learn_ppo.py rename to examples/pl_domain_templates/reinforce_learn_ppo.py index a400de062b..c52ac4159e 100644 --- a/pl_examples/domain_templates/reinforce_learn_ppo.py +++ b/examples/pl_domain_templates/reinforce_learn_ppo.py @@ -37,8 +37,7 @@ from torch.distributions import Categorical, Normal from torch.optim.optimizer import Optimizer from torch.utils.data import DataLoader, IterableDataset -import pytorch_lightning as pl -from pl_examples import cli_lightning_logo +from pytorch_lightning import cli_lightning_logo, LightningModule, seed_everything, Trainer def create_mlp(input_shape: Tuple[int], n_actions: int, hidden_size: int = 128): @@ -140,7 +139,7 @@ class ExperienceSourceDataset(IterableDataset): return iterator -class PPOLightning(pl.LightningModule): +class PPOLightning(LightningModule): """PyTorch Lightning implementation of PPO. Example: @@ -459,16 +458,16 @@ class PPOLightning(pl.LightningModule): def main(args) -> None: model = PPOLightning(**vars(args)) - trainer = pl.Trainer.from_argparse_args(args) + trainer = Trainer.from_argparse_args(args) trainer.fit(model) if __name__ == "__main__": cli_lightning_logo() - pl.seed_everything(0) + seed_everything(0) parent_parser = argparse.ArgumentParser(add_help=False) - parent_parser = pl.Trainer.add_argparse_args(parent_parser) + parent_parser = Trainer.add_argparse_args(parent_parser) parser = PPOLightning.add_model_specific_args(parent_parser) args = parser.parse_args() diff --git a/pl_examples/domain_templates/semantic_segmentation.py b/examples/pl_domain_templates/semantic_segmentation.py similarity index 69% rename from pl_examples/domain_templates/semantic_segmentation.py rename to examples/pl_domain_templates/semantic_segmentation.py index d5a10c4faa..cae48bf449 100644 --- a/pl_examples/domain_templates/semantic_segmentation.py +++ b/examples/pl_domain_templates/semantic_segmentation.py @@ -21,11 +21,10 @@ import torch import torch.nn.functional as F import torchvision.transforms as transforms from PIL import Image +from torch import nn from torch.utils.data import DataLoader, Dataset -import pytorch_lightning as pl -from pl_examples import cli_lightning_logo -from pl_examples.domain_templates.unet import UNet +from pytorch_lightning import cli_lightning_logo, LightningModule, Trainer from pytorch_lightning.loggers import WandbLogger DEFAULT_VOID_LABELS = (0, 1, 2, 3, 4, 5, 6, 9, 10, 14, 15, 16, 18, 29, 30, -1) @@ -68,8 +67,8 @@ class KITTI(Dataset): encoded using `encode_segmap`, and given `transform` (if any) are applied to the image only (mask does not usually require transforms, but they can be implemented in a similar way). - >>> from pl_examples import _DATASETS_PATH - >>> dataset_path = os.path.join(_DATASETS_PATH, "Kitti") + >>> from examples import DATASETS_PATH + >>> dataset_path = os.path.join(DATASETS_PATH, "Kitti") >>> _create_synth_kitti_dataset(dataset_path, image_dims=(1024, 512)) >>> KITTI(dataset_path, 'train') # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE <...semantic_segmentation.KITTI object at ...> @@ -146,7 +145,148 @@ class KITTI(Dataset): return files_list -class SegModel(pl.LightningModule): +class UNet(nn.Module): + """Architecture based on U-Net: Convolutional Networks for Biomedical Image Segmentation. + + Link - https://arxiv.org/abs/1505.04597 + + >>> UNet(num_classes=2, num_layers=3) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE + UNet( + (layers): ModuleList( + (0): DoubleConv(...) + (1): Down(...) + (2): Down(...) + (3): Up(...) + (4): Up(...) + (5): Conv2d(64, 2, kernel_size=(1, 1), stride=(1, 1)) + ) + ) + """ + + def __init__(self, num_classes: int = 19, num_layers: int = 5, features_start: int = 64, bilinear: bool = False): + """ + Args: + num_classes: Number of output classes required (default 19 for KITTI dataset) + num_layers: Number of layers in each side of U-net + features_start: Number of features in first layer + bilinear: Whether to use bilinear interpolation or transposed convolutions for upsampling. + """ + super().__init__() + self.num_layers = num_layers + + layers = [DoubleConv(3, features_start)] + + feats = features_start + for _ in range(num_layers - 1): + layers.append(Down(feats, feats * 2)) + feats *= 2 + + for _ in range(num_layers - 1): + layers.append(Up(feats, feats // 2, bilinear)) + feats //= 2 + + layers.append(nn.Conv2d(feats, num_classes, kernel_size=1)) + + self.layers = nn.ModuleList(layers) + + def forward(self, x): + xi = [self.layers[0](x)] + # Down path + for layer in self.layers[1 : self.num_layers]: + xi.append(layer(xi[-1])) + # Up path + for i, layer in enumerate(self.layers[self.num_layers : -1]): + xi[-1] = layer(xi[-1], xi[-2 - i]) + return self.layers[-1](xi[-1]) + + +class DoubleConv(nn.Module): + """Double Convolution and BN and ReLU (3x3 conv -> BN -> ReLU) ** 2. + + >>> DoubleConv(4, 4) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE + DoubleConv( + (net): Sequential(...) + ) + """ + + def __init__(self, in_ch: int, out_ch: int): + super().__init__() + self.net = nn.Sequential( + nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1), + nn.BatchNorm2d(out_ch), + nn.ReLU(inplace=True), + nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1), + nn.BatchNorm2d(out_ch), + nn.ReLU(inplace=True), + ) + + def forward(self, x): + return self.net(x) + + +class Down(nn.Module): + """Combination of MaxPool2d and DoubleConv in series. + + >>> Down(4, 8) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE + Down( + (net): Sequential( + (0): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) + (1): DoubleConv( + (net): Sequential(...) + ) + ) + ) + """ + + def __init__(self, in_ch: int, out_ch: int): + super().__init__() + self.net = nn.Sequential(nn.MaxPool2d(kernel_size=2, stride=2), DoubleConv(in_ch, out_ch)) + + def forward(self, x): + return self.net(x) + + +class Up(nn.Module): + """Upsampling (by either bilinear interpolation or transpose convolutions) followed by concatenation of feature + map from contracting path, followed by double 3x3 convolution. + + >>> Up(8, 4) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE + Up( + (upsample): ConvTranspose2d(8, 4, kernel_size=(2, 2), stride=(2, 2)) + (conv): DoubleConv( + (net): Sequential(...) + ) + ) + """ + + def __init__(self, in_ch: int, out_ch: int, bilinear: bool = False): + super().__init__() + self.upsample = None + if bilinear: + self.upsample = nn.Sequential( + nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True), + nn.Conv2d(in_ch, in_ch // 2, kernel_size=1), + ) + else: + self.upsample = nn.ConvTranspose2d(in_ch, in_ch // 2, kernel_size=2, stride=2) + + self.conv = DoubleConv(in_ch, out_ch) + + def forward(self, x1, x2): + x1 = self.upsample(x1) + + # Pad x1 to the size of x2 + diff_h = x2.shape[2] - x1.shape[2] + diff_w = x2.shape[3] - x1.shape[3] + + x1 = F.pad(x1, [diff_w // 2, diff_w - diff_w // 2, diff_h // 2, diff_h - diff_h // 2]) + + # Concatenate along the channels axis + x = torch.cat([x2, x1], dim=1) + return self.conv(x) + + +class SegModel(LightningModule): """Semantic Segmentation Module. This is a basic semantic segmentation module implemented with Lightning. @@ -158,8 +298,7 @@ class SegModel(pl.LightningModule): Adam optimizer is used along with Cosine Annealing learning rate scheduler. - >>> from pl_examples import _DATASETS_PATH - >>> dataset_path = os.path.join(_DATASETS_PATH, "Kitti") + >>> dataset_path = os.path.join(".", "Kitti") >>> _create_synth_kitti_dataset(dataset_path, image_dims=(1024, 512)) >>> SegModel(dataset_path) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE SegModel( @@ -277,7 +416,7 @@ def main(hparams: Namespace): # ------------------------ # 3 INIT TRAINER # ------------------------ - trainer = pl.Trainer.from_argparse_args(hparams) + trainer = Trainer.from_argparse_args(hparams) # ------------------------ # 5 START TRAINING diff --git a/pl_examples/fault_tolerant/automatic.py b/examples/pl_fault_tolerant/automatic.py similarity index 100% rename from pl_examples/fault_tolerant/automatic.py rename to examples/pl_fault_tolerant/automatic.py diff --git a/pl_examples/hpu_examples/simple_mnist/mnist.py b/examples/pl_hpu/mnist_sample.py similarity index 93% rename from pl_examples/hpu_examples/simple_mnist/mnist.py rename to examples/pl_hpu/mnist_sample.py index a5d4b47d6b..de5d7c62ba 100644 --- a/pl_examples/hpu_examples/simple_mnist/mnist.py +++ b/examples/pl_hpu/mnist_sample.py @@ -15,13 +15,13 @@ import torch from jsonargparse import lazy_instance from torch.nn import functional as F -import pytorch_lightning as pl -from pl_examples.basic_examples.mnist_datamodule import MNISTDataModule +from pytorch_lightning import LightningModule +from pytorch_lightning.demos.mnist_datamodule import MNISTDataModule from pytorch_lightning.plugins import HPUPrecisionPlugin from pytorch_lightning.utilities.cli import LightningCLI -class LitClassifier(pl.LightningModule): +class LitClassifier(LightningModule): def __init__(self): super().__init__() self.l1 = torch.nn.Linear(28 * 28, 10) diff --git a/pl_examples/hpu_examples/simple_mnist/ops_bf16_mnist.txt b/examples/pl_hpu/ops_bf16_mnist.txt similarity index 100% rename from pl_examples/hpu_examples/simple_mnist/ops_bf16_mnist.txt rename to examples/pl_hpu/ops_bf16_mnist.txt diff --git a/pl_examples/hpu_examples/simple_mnist/ops_fp32_mnist.txt b/examples/pl_hpu/ops_fp32_mnist.txt similarity index 100% rename from pl_examples/hpu_examples/simple_mnist/ops_fp32_mnist.txt rename to examples/pl_hpu/ops_fp32_mnist.txt diff --git a/pl_examples/integration_examples/dali_image_classifier.py b/examples/pl_integrations/dali_image_classifier.py similarity index 91% rename from pl_examples/integration_examples/dali_image_classifier.py rename to examples/pl_integrations/dali_image_classifier.py index 49bebf44ca..5d5bfc1fa9 100644 --- a/pl_examples/integration_examples/dali_image_classifier.py +++ b/examples/pl_integrations/dali_image_classifier.py @@ -12,6 +12,7 @@ # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC +from os import path from random import shuffle from warnings import warn @@ -21,11 +22,10 @@ from packaging.version import Version from torch.nn import functional as F from torch.utils.data import random_split -import pytorch_lightning as pl -from pl_examples import _DALI_AVAILABLE, _DATASETS_PATH, cli_lightning_logo -from pl_examples.basic_examples.mnist_datamodule import MNIST +from pytorch_lightning import cli_lightning_logo, LightningDataModule, LightningModule +from pytorch_lightning.demos.mnist_datamodule import MNIST from pytorch_lightning.utilities.cli import LightningCLI -from pytorch_lightning.utilities.imports import _TORCHVISION_AVAILABLE +from pytorch_lightning.utilities.imports import _DALI_AVAILABLE, _TORCHVISION_AVAILABLE if _TORCHVISION_AVAILABLE: from torchvision import transforms @@ -43,6 +43,8 @@ else: warn("NVIDIA DALI is not available") ops, Pipeline, DALIClassificationIterator, LastBatchPolicy = ..., ABC, ABC, ABC +DATASETS_PATH = path.join(path.dirname(__file__), "..", "..", "Datasets") + class ExternalMNISTInputIterator: """This iterator class wraps torchvision's MNIST dataset and returns the images and labels in batches.""" @@ -120,7 +122,7 @@ class DALIClassificationLoader(DALIClassificationIterator): return batch_count + last_batch -class LitClassifier(pl.LightningModule): +class LitClassifier(LightningModule): def __init__(self, hidden_dim: int = 128, learning_rate: float = 0.0001): super().__init__() self.save_hyperparameters() @@ -159,11 +161,11 @@ class LitClassifier(pl.LightningModule): return torch.optim.Adam(self.parameters(), lr=self.hparams.learning_rate) -class MyDataModule(pl.LightningDataModule): +class MyDataModule(LightningDataModule): def __init__(self, batch_size: int = 32): super().__init__() - dataset = MNIST(_DATASETS_PATH, train=True, download=True, transform=transforms.ToTensor()) - self.mnist_test = MNIST(_DATASETS_PATH, train=False, download=True, transform=transforms.ToTensor()) + dataset = MNIST(DATASETS_PATH, train=True, download=True, transform=transforms.ToTensor()) + self.mnist_test = MNIST(DATASETS_PATH, train=False, download=True, transform=transforms.ToTensor()) self.mnist_train, self.mnist_val = random_split(dataset, [55000, 5000]) eii_train = ExternalMNISTInputIterator(self.mnist_train, batch_size) diff --git a/pl_examples/ipu_examples/mnist.py b/examples/pl_ipu/mnist_sample.py similarity index 92% rename from pl_examples/ipu_examples/mnist.py rename to examples/pl_ipu/mnist_sample.py index 3935269ea0..56835afec5 100644 --- a/pl_examples/ipu_examples/mnist.py +++ b/examples/pl_ipu/mnist_sample.py @@ -15,11 +15,11 @@ import torch from torch.nn import functional as F -import pytorch_lightning as pl -from pl_examples.basic_examples.mnist_datamodule import MNISTDataModule +from pytorch_lightning import LightningModule, Trainer +from pytorch_lightning.demos.mnist_datamodule import MNISTDataModule -class LitClassifier(pl.LightningModule): +class LitClassifier(LightningModule): def __init__(self, hidden_dim: int = 128, learning_rate: float = 0.0001): super().__init__() self.save_hyperparameters() @@ -78,7 +78,7 @@ if __name__ == "__main__": model = LitClassifier() - trainer = pl.Trainer(max_epochs=2, accelerator="ipu", devices=8) + trainer = Trainer(max_epochs=2, accelerator="ipu", devices=8) trainer.fit(model, datamodule=dm) trainer.test(model, datamodule=dm) diff --git a/pl_examples/loop_examples/kfold.py b/examples/pl_loops/kfold.py similarity index 90% rename from pl_examples/loop_examples/kfold.py rename to examples/pl_loops/kfold.py index 9603f072e6..028e0be698 100644 --- a/pl_examples/loop_examples/kfold.py +++ b/examples/pl_loops/kfold.py @@ -15,6 +15,7 @@ import os.path as osp from abc import ABC, abstractmethod from copy import deepcopy from dataclasses import dataclass +from os import path from typing import Any, Dict, List, Optional, Type import torch @@ -26,15 +27,16 @@ from torch.utils.data.dataloader import DataLoader from torch.utils.data.dataset import Dataset, Subset from torchmetrics.classification.accuracy import Accuracy -from pl_examples import _DATASETS_PATH -from pl_examples.basic_examples.mnist_datamodule import MNIST -from pl_examples.basic_examples.mnist_examples.image_classifier_4_lightning_module import ImageClassifier from pytorch_lightning import LightningDataModule, seed_everything, Trainer from pytorch_lightning.core.module import LightningModule +from pytorch_lightning.demos.boring_classes import Net +from pytorch_lightning.demos.mnist_datamodule import MNIST from pytorch_lightning.loops.fit_loop import FitLoop from pytorch_lightning.loops.loop import Loop from pytorch_lightning.trainer.states import TrainerFn +DATASETS_PATH = path.join(path.dirname(__file__), "..", "..", "Datasets") + ############################################################################################# # KFold Loop / Cross Validation Example # # This example demonstrates how to leverage Lightning Loop Customization introduced in v1.5 # @@ -79,11 +81,11 @@ class MNISTKFoldDataModule(BaseKFoldDataModule): def prepare_data(self) -> None: # download the data. - MNIST(_DATASETS_PATH, transform=T.Compose([T.ToTensor(), T.Normalize(mean=(0.5,), std=(0.5,))])) + MNIST(DATASETS_PATH, transform=T.Compose([T.ToTensor(), T.Normalize(mean=(0.5,), std=(0.5,))])) def setup(self, stage: Optional[str] = None) -> None: # load the data - dataset = MNIST(_DATASETS_PATH, transform=T.Compose([T.ToTensor(), T.Normalize(mean=(0.5,), std=(0.5,))])) + dataset = MNIST(DATASETS_PATH, transform=T.Compose([T.ToTensor(), T.Normalize(mean=(0.5,), std=(0.5,))])) self.train_dataset, self.test_dataset = random_split(dataset, [50000, 10000]) def setup_folds(self, num_folds: int) -> None: @@ -243,11 +245,23 @@ class KFoldLoop(Loop): self.__dict__.update(state) -class LitImageClassifier(ImageClassifier): - def __init__(self) -> None: +class LitImageClassifier(LightningModule): + def __init__(self, model, lr=1.0, gamma=0.7, batch_size=32): super().__init__() + self.save_hyperparameters(ignore="model") + self.model = model or Net() + self.test_acc = Accuracy() self.val_acc = Accuracy() + def forward(self, x): + return self.model(x) + + def training_step(self, batch, batch_idx): + x, y = batch + logits = self.forward(x) + loss = F.nll_loss(logits, y.long()) + return loss + def validation_step(self, batch: Any, batch_idx: int) -> None: x, y = batch logits = self.forward(x) @@ -256,6 +270,18 @@ class LitImageClassifier(ImageClassifier): self.log("val_acc", self.val_acc) self.log("val_loss", loss) + def test_step(self, batch, batch_idx): + x, y = batch + logits = self.forward(x) + loss = F.nll_loss(logits, y.long()) + self.test_acc(logits, y) + self.log("test_acc", self.test_acc) + self.log("test_loss", loss) + + def configure_optimizers(self): + optimizer = torch.optim.Adadelta(self.model.parameters(), lr=self.hparams.lr) + return [optimizer], [torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=self.hparams.gamma)] + ############################################################################################# # Step 5 / 5: Connect the KFoldLoop to the Trainer # diff --git a/pl_examples/loop_examples/mnist_lite.py b/examples/pl_loops/mnist_lite.py similarity index 93% rename from pl_examples/loop_examples/mnist_lite.py rename to examples/pl_loops/mnist_lite.py index 4d59ef326f..9310705508 100644 --- a/pl_examples/loop_examples/mnist_lite.py +++ b/examples/pl_loops/mnist_lite.py @@ -12,6 +12,7 @@ # See the License for the specific language governing permissions and # limitations under the License. import argparse +from os import path from typing import Any import torch @@ -21,12 +22,14 @@ import torchvision.transforms as T from torch.optim.lr_scheduler import StepLR from torchmetrics import Accuracy -from pl_examples.basic_examples.mnist_datamodule import MNIST -from pl_examples.basic_examples.mnist_examples.image_classifier_1_pytorch import Net from pytorch_lightning import seed_everything +from pytorch_lightning.demos.boring_classes import Net +from pytorch_lightning.demos.mnist_datamodule import MNIST from pytorch_lightning.lite import LightningLite from pytorch_lightning.loops import Loop +DATASETS_PATH = path.join(path.dirname(__file__), "..", "..", "Datasets") + class TrainLoop(Loop): def __init__(self, lite, args, model, optimizer, scheduler, dataloader): @@ -139,10 +142,10 @@ class Lite(LightningLite): def run(self, hparams): transform = T.Compose([T.ToTensor(), T.Normalize((0.1307,), (0.3081,))]) if self.is_global_zero: - MNIST("./data", download=True) + MNIST(DATASETS_PATH, download=True) self.barrier() - train_dataset = MNIST("./data", train=True, transform=transform) - test_dataset = MNIST("./data", train=False, transform=transform) + train_dataset = MNIST(DATASETS_PATH, train=True, transform=transform) + test_dataset = MNIST(DATASETS_PATH, train=False, transform=transform) train_loader = torch.utils.data.DataLoader(train_dataset, hparams.batch_size) test_loader = torch.utils.data.DataLoader(test_dataset, hparams.test_batch_size) diff --git a/pl_examples/loop_examples/yielding_training_step.py b/examples/pl_loops/yielding_training_step.py similarity index 64% rename from pl_examples/loop_examples/yielding_training_step.py rename to examples/pl_loops/yielding_training_step.py index 52abf768fe..7fedf72c4e 100644 --- a/pl_examples/loop_examples/yielding_training_step.py +++ b/examples/pl_loops/yielding_training_step.py @@ -12,17 +12,23 @@ # See the License for the specific language governing permissions and # limitations under the License. import inspect +from argparse import ArgumentParser from functools import partial -from typing import Generator +import numpy as np import torch +import torch.nn as nn +import torch.nn.functional as F -from pl_examples.domain_templates.generative_adversarial_net import GAN as GANTemplate -from pl_examples.domain_templates.generative_adversarial_net import MNISTDataModule -from pytorch_lightning import Trainer +from pytorch_lightning import LightningModule, Trainer +from pytorch_lightning.demos.mnist_datamodule import MNISTDataModule from pytorch_lightning.loops import OptimizerLoop from pytorch_lightning.loops.optimization.optimizer_loop import ClosureResult from pytorch_lightning.utilities.exceptions import MisconfigurationException +from pytorch_lightning.utilities.imports import _TORCHVISION_AVAILABLE + +if _TORCHVISION_AVAILABLE: + import torchvision ############################################################################################# # Yield Loop # @@ -108,7 +114,119 @@ class YieldLoop(OptimizerLoop): ############################################################################################# -class GAN(GANTemplate): +class Generator(nn.Module): + """ + >>> Generator(img_shape=(1, 8, 8)) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE + Generator( + (model): Sequential(...) + ) + """ + + def __init__(self, latent_dim: int = 100, img_shape: tuple = (1, 28, 28)): + super().__init__() + self.img_shape = img_shape + + def block(in_feat, out_feat, normalize=True): + layers = [nn.Linear(in_feat, out_feat)] + if normalize: + layers.append(nn.BatchNorm1d(out_feat, 0.8)) + layers.append(nn.LeakyReLU(0.2, inplace=True)) + return layers + + self.model = nn.Sequential( + *block(latent_dim, 128, normalize=False), + *block(128, 256), + *block(256, 512), + *block(512, 1024), + nn.Linear(1024, int(np.prod(img_shape))), + nn.Tanh(), + ) + + def forward(self, z): + img = self.model(z) + img = img.view(img.size(0), *self.img_shape) + return img + + +class Discriminator(nn.Module): + """ + >>> Discriminator(img_shape=(1, 28, 28)) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE + Discriminator( + (model): Sequential(...) + ) + """ + + def __init__(self, img_shape): + super().__init__() + + self.model = nn.Sequential( + nn.Linear(int(np.prod(img_shape)), 512), + nn.LeakyReLU(0.2, inplace=True), + nn.Linear(512, 256), + nn.LeakyReLU(0.2, inplace=True), + nn.Linear(256, 1), + ) + + def forward(self, img): + img_flat = img.view(img.size(0), -1) + validity = self.model(img_flat) + + return validity + + +class GAN(LightningModule): + """ + >>> GAN(img_shape=(1, 8, 8)) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE + GAN( + (generator): Generator( + (model): Sequential(...) + ) + (discriminator): Discriminator( + (model): Sequential(...) + ) + ) + """ + + def __init__( + self, + img_shape: tuple = (1, 28, 28), + lr: float = 0.0002, + b1: float = 0.5, + b2: float = 0.999, + latent_dim: int = 100, + ): + super().__init__() + + self.save_hyperparameters() + + # networks + self.generator = Generator(latent_dim=self.hparams.latent_dim, img_shape=img_shape) + self.discriminator = Discriminator(img_shape=img_shape) + + self.validation_z = torch.randn(8, self.hparams.latent_dim) + + self.example_input_array = torch.zeros(2, self.hparams.latent_dim) + + @staticmethod + def add_argparse_args(parent_parser: ArgumentParser, *, use_argument_group=True): + if use_argument_group: + parser = parent_parser.add_argument_group("GAN") + parser_out = parent_parser + else: + parser = ArgumentParser(parents=[parent_parser], add_help=False) + parser_out = parser + parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate") + parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient") + parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of second order momentum of gradient") + parser.add_argument("--latent_dim", type=int, default=100, help="dimensionality of the latent space") + return parser_out + + def forward(self, z): + return self.generator(z) + + @staticmethod + def adversarial_loss(y_hat, y): + return F.binary_cross_entropy_with_logits(y_hat, y) # This training_step method is now a Python generator def training_step(self, batch, batch_idx, optimizer_idx=0) -> Generator: @@ -145,6 +263,24 @@ class GAN(GANTemplate): yield d_loss + def configure_optimizers(self): + lr = self.hparams.lr + b1 = self.hparams.b1 + b2 = self.hparams.b2 + + opt_g = torch.optim.Adam(self.generator.parameters(), lr=lr, betas=(b1, b2)) + opt_d = torch.optim.Adam(self.discriminator.parameters(), lr=lr, betas=(b1, b2)) + return [opt_g, opt_d], [] + + def on_train_epoch_end(self): + z = self.validation_z.type_as(self.generator.model[0].weight) + + # log sampled images + sample_imgs = self(z) + grid = torchvision.utils.make_grid(sample_imgs) + for logger in self.loggers: + logger.experiment.add_image("generated_images", grid, self.current_epoch) + ############################################################################################# # Step 3 / 3: Connect the loop to the Trainer # diff --git a/examples/run_ddp_examples.sh b/examples/run_ddp_examples.sh new file mode 100644 index 0000000000..5b1fe9cada --- /dev/null +++ b/examples/run_ddp_examples.sh @@ -0,0 +1,21 @@ +#!/bin/bash +# Copyright The PyTorch Lightning team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +set -e + +# test that a user can manually launch individual processes +export PYTHONPATH="${PYTHONPATH}:$(pwd)" +args="--trainer.gpus 2 --trainer.strategy ddp --trainer.max_epochs=1 --trainer.limit_train_batches=1 --trainer.limit_val_batches=1 --trainer.limit_test_batches=1" +MASTER_ADDR="localhost" MASTER_PORT=1234 LOCAL_RANK=1 python convert_from_pt_to_pl/image_classifier_5_lightning_datamodule.py ${args} & +MASTER_ADDR="localhost" MASTER_PORT=1234 LOCAL_RANK=0 python convert_from_pt_to_pl/image_classifier_5_lightning_datamodule.py ${args} diff --git a/examples/run_pl_examples.sh b/examples/run_pl_examples.sh new file mode 100644 index 0000000000..49c7fb716d --- /dev/null +++ b/examples/run_pl_examples.sh @@ -0,0 +1,39 @@ +#!/bin/bash +set -ex + +export PYTHONPATH="${PYTHONPATH}:$(pwd)" +dir_path=$(dirname "${BASH_SOURCE[0]}") +args=" + --data.batch_size=32 + --trainer.max_epochs=1 + --trainer.limit_train_batches=2 + --trainer.limit_val_batches=2 + --trainer.limit_test_batches=2 + --trainer.limit_predict_batches=2 + --optimizer=Adam +" + +python "${dir_path}/pl_basics/backbone_image_classifier.py" ${args} "$@" +python "${dir_path}/pl_basics/autoencoder.py" ${args} "$@" + + +args="--dry-run" +python "${dir_path}/convert_from_pt_to_pl/image_classifier_1_pytorch.py" ${args} +python "${dir_path}/convert_from_pt_to_pl/image_classifier_2_lite.py" ${args} +python "${dir_path}/convert_from_pt_to_pl/image_classifier_3_lite_to_lightning_module.py" ${args} +python "${dir_path}/pl_loops/mnist_lite.py" ${args} + + +args=" + --trainer.max_epochs=1 + --trainer.limit_train_batches=2 + --trainer.limit_val_batches=2 + --trainer.limit_test_batches=2 + --trainer.limit_predict_batches=2 + --optimizer=Adam +" + +python "${dir_path}/convert_from_pt_to_pl/image_classifier_4_lightning_module.py" ${args} "$@" +python "${dir_path}/convert_from_pt_to_pl/image_classifier_5_lightning_datamodule.py" ${args} "$@" + +python "${dir_path}/pl_fault_tolerant/automatic.py" diff --git a/pl_examples/test_examples.py b/examples/test_pl_examples.py similarity index 89% rename from pl_examples/test_examples.py rename to examples/test_pl_examples.py index c918b9561c..a47ed2b771 100644 --- a/pl_examples/test_examples.py +++ b/examples/test_pl_examples.py @@ -16,8 +16,7 @@ from unittest import mock import pytest import torch -from pl_examples import _DALI_AVAILABLE -from pytorch_lightning.utilities.imports import _IS_WINDOWS +from pytorch_lightning.utilities.imports import _DALI_AVAILABLE, _IS_WINDOWS ARGS_DEFAULT = ( "--trainer.default_root_dir %(tmpdir)s " @@ -36,7 +35,7 @@ ARGS_GPU = ARGS_DEFAULT + "--trainer.accelerator gpu --trainer.devices 1 " @pytest.mark.skipif(_IS_WINDOWS, reason="Not supported on Windows") @pytest.mark.parametrize("cli_args", [ARGS_GPU]) def test_examples_mnist_dali(tmpdir, cli_args): - from pl_examples.integration_examples.dali_image_classifier import cli_main + from examples.pl_integrations.dali_image_classifier import cli_main # update the temp dir cli_args = cli_args % {"tmpdir": tmpdir} diff --git a/pl_examples/README.md b/pl_examples/README.md deleted file mode 100644 index 307075828f..0000000000 --- a/pl_examples/README.md +++ /dev/null @@ -1,53 +0,0 @@ -# Examples - -Our most robust examples showing all sorts of implementations -can be found in our sister library [Lightning Bolts](https://pytorch-lightning.readthedocs.io/en/latest/ecosystem/bolts.html). - -______________________________________________________________________ - -## MNIST Examples - -5 MNIST examples showing how to gradually convert from pure PyTorch to PyTorch Lightning. - -The transition through [LightningLite](https://pytorch-lightning.readthedocs.io/en/latest/starter/lightning_lite.html) from pure PyTorch is optional but it might be helpful to learn about it. - -- [MNIST with vanilla PyTorch](./basic_examples/mnist_examples/image_classifier_1_pytorch.py) -- [MNIST with LightningLite](./basic_examples/mnist_examples/image_classifier_2_lite.py) -- [MNIST LightningLite to LightningModule](./basic_examples/mnist_examples/image_classifier_3_lite_to_lightning_module.py) -- [MNIST with LightningModule](./basic_examples/mnist_examples/image_classifier_4_lightning_module.py) -- [MNIST with LightningModule + LightningDataModule](./basic_examples/mnist_examples/image_classifier_5_lightning_datamodule.py) - -______________________________________________________________________ - -## Basic Examples - -In this folder, we have 2 simple examples: - -- [Image Classifier](./basic_examples/backbone_image_classifier.py) (trains arbitrary datasets with arbitrary backbones). -- [Image Classifier + DALI](./basic_examples/mnist_examples/image_classifier_4_dali.py) (defines the model inside the `LightningModule`). -- [Autoencoder](./basic_examples/autoencoder.py) - -______________________________________________________________________ - -## Domain Examples - -This folder contains older examples. You should instead use the examples -in [Lightning Bolts](https://pytorch-lightning.readthedocs.io/en/latest/ecosystem/bolts.html) -for advanced use cases. - -______________________________________________________________________ - -## Basic Examples - -In this folder, we have 1 simple example: - -- [Image Classifier + DALI](./integration_examples/dali_image_classifier.py) (defines the model inside the `LightningModule`). - -______________________________________________________________________ - -## Loop examples - -Contains implementations leveraging [loop customization](https://pytorch-lightning.readthedocs.io/en/latest/extensions/loops.html) to enhance the Trainer with new optimization routines. - -- [K-fold Cross Validation Loop](./loop_examples/kfold.py): Implementation of cross validation in a loop and special datamodule. -- [Yield Loop](./loop_examples/yielding_training_step.py): Enables yielding from the training_step like in a Python generator. Useful for automatic optimization with multiple optimizers. diff --git a/pl_examples/__init__.py b/pl_examples/__init__.py deleted file mode 100644 index 088caed5e5..0000000000 --- a/pl_examples/__init__.py +++ /dev/null @@ -1,52 +0,0 @@ -import os - -from six.moves import urllib - -from pytorch_lightning.utilities import _module_available - -# TorchVision hotfix https://github.com/pytorch/vision/issues/1938 -opener = urllib.request.build_opener() -opener.addheaders = [("User-agent", "Mozilla/5.0")] -urllib.request.install_opener(opener) - -_EXAMPLES_ROOT = os.path.dirname(__file__) -_PACKAGE_ROOT = os.path.dirname(_EXAMPLES_ROOT) -_DATASETS_PATH = os.path.join(_PACKAGE_ROOT, "Datasets") - -_DALI_AVAILABLE = _module_available("nvidia.dali") - -LIGHTNING_LOGO = """ - #### - ########### - #################### - ############################ - ##################################### -############################################## -######################### ################### -####################### ################### -#################### #################### -################## ##################### -################ ###################### -##################### ################# -###################### ################### -##################### ##################### -#################### ####################### -################### ######################### -############################################## - ##################################### - ############################ - #################### - ########## - #### -""" - - -def nice_print(msg, last=False): - print() - print("\033[0;35m" + msg + "\033[0m") - if last: - print() - - -def cli_lightning_logo(): - nice_print(LIGHTNING_LOGO) diff --git a/pl_examples/basic_examples/__init__.py b/pl_examples/basic_examples/__init__.py deleted file mode 100644 index e69de29bb2..0000000000 diff --git a/pl_examples/basic_examples/mnist_examples/__init__.py b/pl_examples/basic_examples/mnist_examples/__init__.py deleted file mode 100644 index e69de29bb2..0000000000 diff --git a/pl_examples/domain_templates/__init__.py b/pl_examples/domain_templates/__init__.py deleted file mode 100644 index e69de29bb2..0000000000 diff --git a/pl_examples/domain_templates/unet.py b/pl_examples/domain_templates/unet.py deleted file mode 100644 index 6714699883..0000000000 --- a/pl_examples/domain_templates/unet.py +++ /dev/null @@ -1,158 +0,0 @@ -# Copyright The PyTorch Lightning team. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import torch -import torch.nn as nn -import torch.nn.functional as F - - -class UNet(nn.Module): - """Architecture based on U-Net: Convolutional Networks for Biomedical Image Segmentation. - - Link - https://arxiv.org/abs/1505.04597 - - >>> UNet(num_classes=2, num_layers=3) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE - UNet( - (layers): ModuleList( - (0): DoubleConv(...) - (1): Down(...) - (2): Down(...) - (3): Up(...) - (4): Up(...) - (5): Conv2d(64, 2, kernel_size=(1, 1), stride=(1, 1)) - ) - ) - """ - - def __init__(self, num_classes: int = 19, num_layers: int = 5, features_start: int = 64, bilinear: bool = False): - """ - Args: - num_classes: Number of output classes required (default 19 for KITTI dataset) - num_layers: Number of layers in each side of U-net - features_start: Number of features in first layer - bilinear: Whether to use bilinear interpolation or transposed convolutions for upsampling. - """ - super().__init__() - self.num_layers = num_layers - - layers = [DoubleConv(3, features_start)] - - feats = features_start - for _ in range(num_layers - 1): - layers.append(Down(feats, feats * 2)) - feats *= 2 - - for _ in range(num_layers - 1): - layers.append(Up(feats, feats // 2, bilinear)) - feats //= 2 - - layers.append(nn.Conv2d(feats, num_classes, kernel_size=1)) - - self.layers = nn.ModuleList(layers) - - def forward(self, x): - xi = [self.layers[0](x)] - # Down path - for layer in self.layers[1 : self.num_layers]: - xi.append(layer(xi[-1])) - # Up path - for i, layer in enumerate(self.layers[self.num_layers : -1]): - xi[-1] = layer(xi[-1], xi[-2 - i]) - return self.layers[-1](xi[-1]) - - -class DoubleConv(nn.Module): - """Double Convolution and BN and ReLU (3x3 conv -> BN -> ReLU) ** 2. - - >>> DoubleConv(4, 4) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE - DoubleConv( - (net): Sequential(...) - ) - """ - - def __init__(self, in_ch: int, out_ch: int): - super().__init__() - self.net = nn.Sequential( - nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1), - nn.BatchNorm2d(out_ch), - nn.ReLU(inplace=True), - nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1), - nn.BatchNorm2d(out_ch), - nn.ReLU(inplace=True), - ) - - def forward(self, x): - return self.net(x) - - -class Down(nn.Module): - """Combination of MaxPool2d and DoubleConv in series. - - >>> Down(4, 8) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE - Down( - (net): Sequential( - (0): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) - (1): DoubleConv( - (net): Sequential(...) - ) - ) - ) - """ - - def __init__(self, in_ch: int, out_ch: int): - super().__init__() - self.net = nn.Sequential(nn.MaxPool2d(kernel_size=2, stride=2), DoubleConv(in_ch, out_ch)) - - def forward(self, x): - return self.net(x) - - -class Up(nn.Module): - """Upsampling (by either bilinear interpolation or transpose convolutions) followed by concatenation of feature - map from contracting path, followed by double 3x3 convolution. - - >>> Up(8, 4) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE - Up( - (upsample): ConvTranspose2d(8, 4, kernel_size=(2, 2), stride=(2, 2)) - (conv): DoubleConv( - (net): Sequential(...) - ) - ) - """ - - def __init__(self, in_ch: int, out_ch: int, bilinear: bool = False): - super().__init__() - self.upsample = None - if bilinear: - self.upsample = nn.Sequential( - nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True), - nn.Conv2d(in_ch, in_ch // 2, kernel_size=1), - ) - else: - self.upsample = nn.ConvTranspose2d(in_ch, in_ch // 2, kernel_size=2, stride=2) - - self.conv = DoubleConv(in_ch, out_ch) - - def forward(self, x1, x2): - x1 = self.upsample(x1) - - # Pad x1 to the size of x2 - diff_h = x2.shape[2] - x1.shape[2] - diff_w = x2.shape[3] - x1.shape[3] - - x1 = F.pad(x1, [diff_w // 2, diff_w - diff_w // 2, diff_h // 2, diff_h - diff_h // 2]) - - # Concatenate along the channels axis - x = torch.cat([x2, x1], dim=1) - return self.conv(x) diff --git a/pl_examples/integration_examples/__init__.py b/pl_examples/integration_examples/__init__.py deleted file mode 100644 index e69de29bb2..0000000000 diff --git a/pl_examples/ipu_examples/__init__.py b/pl_examples/ipu_examples/__init__.py deleted file mode 100644 index e69de29bb2..0000000000 diff --git a/pl_examples/loop_examples/__init__.py b/pl_examples/loop_examples/__init__.py deleted file mode 100644 index e69de29bb2..0000000000 diff --git a/pl_examples/run_examples.sh b/pl_examples/run_examples.sh deleted file mode 100755 index 792894137a..0000000000 --- a/pl_examples/run_examples.sh +++ /dev/null @@ -1,39 +0,0 @@ -#!/bin/bash -set -ex - -export PYTHONPATH="${PYTHONPATH}:$(pwd)" -dir_path=$(dirname "${BASH_SOURCE[0]}") -args=" - --data.batch_size=32 - --trainer.max_epochs=1 - --trainer.limit_train_batches=2 - --trainer.limit_val_batches=2 - --trainer.limit_test_batches=2 - --trainer.limit_predict_batches=2 - --optimizer=Adam -" - -python "${dir_path}/basic_examples/backbone_image_classifier.py" ${args} "$@" -python "${dir_path}/basic_examples/autoencoder.py" ${args} "$@" - - -args="--dry-run" -python "${dir_path}/basic_examples/mnist_examples/image_classifier_1_pytorch.py" ${args} -python "${dir_path}/basic_examples/mnist_examples/image_classifier_2_lite.py" ${args} -python "${dir_path}/basic_examples/mnist_examples/image_classifier_3_lite_to_lightning_module.py" ${args} -python "${dir_path}/loop_examples/mnist_lite.py" ${args} - - -args=" - --trainer.max_epochs=1 - --trainer.limit_train_batches=2 - --trainer.limit_val_batches=2 - --trainer.limit_test_batches=2 - --trainer.limit_predict_batches=2 - --optimizer=Adam -" - -python "${dir_path}/basic_examples/mnist_examples/image_classifier_4_lightning_module.py" ${args} "$@" -python "${dir_path}/basic_examples/mnist_examples/image_classifier_5_lightning_datamodule.py" ${args} "$@" - -python "${dir_path}/fault_tolerant/automatic.py" diff --git a/pyproject.toml b/pyproject.toml index ae3bc3b1cd..7b2e8cc873 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -53,6 +53,7 @@ module = [ "pytorch_lightning.core.mixins.device_dtype_mixin", "pytorch_lightning.core.saving", "pytorch_lightning.demos.boring_classes", + "pytorch_lightning.demos.mnist_datamodule", "pytorch_lightning.distributed.dist", "pytorch_lightning.loggers.base", "pytorch_lightning.loggers.logger", diff --git a/pytorch_lightning/demos/__init__.py b/pytorch_lightning/demos/__init__.py new file mode 100644 index 0000000000..2be74bcdc7 --- /dev/null +++ b/pytorch_lightning/demos/__init__.py @@ -0,0 +1,6 @@ +from six.moves import urllib + +# TorchVision hotfix https://github.com/pytorch/vision/issues/1938 +opener = urllib.request.build_opener() +opener.addheaders = [("User-agent", "Mozilla/5.0")] +urllib.request.install_opener(opener) diff --git a/src/pytorch_lightning/__init__.py b/src/pytorch_lightning/__init__.py index adc63486d2..0194477467 100644 --- a/src/pytorch_lightning/__init__.py +++ b/src/pytorch_lightning/__init__.py @@ -36,3 +36,34 @@ __all__ = ["Trainer", "LightningDataModule", "LightningModule", "Callback", "see # for compatibility with namespace packages __import__("pkg_resources").declare_namespace(__name__) + +LIGHTNING_LOGO: str = """ + #### + ########### + #################### + ############################ + ##################################### +############################################## +######################### ################### +####################### ################### +#################### #################### +################## ##################### +################ ###################### +##################### ################# +###################### ################### +##################### ##################### +#################### ####################### +################### ######################### +############################################## + ##################################### + ############################ + #################### + ########## + #### +""" + + +def cli_lightning_logo() -> None: + print() + print("\033[0;35m" + LIGHTNING_LOGO + "\033[0m") + print() diff --git a/src/pytorch_lightning/demos/boring_classes.py b/src/pytorch_lightning/demos/boring_classes.py index 00aea18288..4fd8fd139e 100644 --- a/src/pytorch_lightning/demos/boring_classes.py +++ b/src/pytorch_lightning/demos/boring_classes.py @@ -14,6 +14,8 @@ from typing import Optional import torch +import torch.nn as nn +import torch.nn.functional as F from torch.utils.data import DataLoader, Dataset, IterableDataset, Subset from pytorch_lightning import LightningDataModule, LightningModule @@ -211,3 +213,29 @@ class DemoModel(LightningModule): def configure_optimizers(self): return torch.optim.Adam(self.parameters(), lr=self.learning_rate) + + +class Net(nn.Module): + def __init__(self): + super().__init__() + self.conv1 = nn.Conv2d(1, 32, 3, 1) + self.conv2 = nn.Conv2d(32, 64, 3, 1) + self.dropout1 = nn.Dropout(0.25) + self.dropout2 = nn.Dropout(0.5) + self.fc1 = nn.Linear(9216, 128) + self.fc2 = nn.Linear(128, 10) + + def forward(self, x): + x = self.conv1(x) + x = F.relu(x) + x = self.conv2(x) + x = F.relu(x) + x = F.max_pool2d(x, 2) + x = self.dropout1(x) + x = torch.flatten(x, 1) + x = self.fc1(x) + x = F.relu(x) + x = self.dropout2(x) + x = self.fc2(x) + output = F.log_softmax(x, dim=1) + return output diff --git a/pl_examples/basic_examples/mnist_datamodule.py b/src/pytorch_lightning/demos/mnist_datamodule.py similarity index 87% rename from pl_examples/basic_examples/mnist_datamodule.py rename to src/pytorch_lightning/demos/mnist_datamodule.py index 31a2e284dd..fc8a8bb2e9 100644 --- a/pl_examples/basic_examples/mnist_datamodule.py +++ b/src/pytorch_lightning/demos/mnist_datamodule.py @@ -17,23 +17,25 @@ import platform import random import time import urllib -from typing import Optional, Tuple +from typing import Any, Callable, Optional, Tuple from urllib.error import HTTPError from warnings import warn import torch +from torch import Tensor from torch.utils.data import DataLoader, Dataset, random_split -from pl_examples import _DATASETS_PATH from pytorch_lightning import LightningDataModule from pytorch_lightning.utilities.imports import _TORCHVISION_AVAILABLE if _TORCHVISION_AVAILABLE: from torchvision import transforms as transform_lib +_DATASETS_PATH = "./data" + class _MNIST(Dataset): - """Carbon copy of ``tests.helpers.datasets.MNIST``. + """Carbon copy of ``unittests_pl.helpers.datasets.MNIST``. We cannot import the tests as they are not distributed with the package. See https://github.com/PyTorchLightning/pytorch-lightning/pull/7614#discussion_r671183652 for more context. @@ -49,8 +51,8 @@ class _MNIST(Dataset): cache_folder_name = "complete" def __init__( - self, root: str, train: bool = True, normalize: tuple = (0.1307, 0.3081), download: bool = True, **kwargs - ): + self, root: str, train: bool = True, normalize: tuple = (0.1307, 0.3081), download: bool = True, **kwargs: Any + ) -> None: super().__init__() self.root = root self.train = train # training set or test set @@ -61,7 +63,7 @@ class _MNIST(Dataset): data_file = self.TRAIN_FILE_NAME if self.train else self.TEST_FILE_NAME self.data, self.targets = self._try_load(os.path.join(self.cached_folder_path, data_file)) - def __getitem__(self, idx: int) -> Tuple[torch.Tensor, int]: + def __getitem__(self, idx: int) -> Tuple[Tensor, int]: img = self.data[idx].float().unsqueeze(0) target = int(self.targets[idx]) @@ -83,7 +85,7 @@ class _MNIST(Dataset): existing = existing and os.path.isfile(os.path.join(data_folder, fname)) return existing - def prepare_data(self, download: bool = True): + def prepare_data(self, download: bool = True) -> None: if download and not self._check_exists(self.cached_folder_path): self._download(self.cached_folder_path) if not self._check_exists(self.cached_folder_path): @@ -97,7 +99,7 @@ class _MNIST(Dataset): urllib.request.urlretrieve(url, fpath) @staticmethod - def _try_load(path_data, trials: int = 30, delta: float = 1.0): + def _try_load(path_data: str, trials: int = 30, delta: float = 1.0) -> Tuple[Tensor, Tensor]: """Resolving loading from the same time from multiple concurrent processes.""" res, exception = None, None assert trials, "at least some trial has to be set" @@ -106,8 +108,8 @@ class _MNIST(Dataset): try: res = torch.load(path_data) # todo: specify the possible exception - except Exception as e: - exception = e + except Exception as ex: + exception = ex time.sleep(delta * random.random()) else: break @@ -117,13 +119,13 @@ class _MNIST(Dataset): return res @staticmethod - def normalize_tensor(tensor: torch.Tensor, mean: float = 0.0, std: float = 1.0) -> torch.Tensor: + def normalize_tensor(tensor: Tensor, mean: float = 0.0, std: float = 1.0) -> Tensor: mean = torch.as_tensor(mean, dtype=tensor.dtype, device=tensor.device) std = torch.as_tensor(std, dtype=tensor.dtype, device=tensor.device) return tensor.sub(mean).div(std) -def MNIST(*args, **kwargs): +def MNIST(*args: Any, **kwargs: Any) -> Dataset: torchvision_mnist_available = not bool(os.getenv("PL_USE_MOCKED_MNIST", False)) if torchvision_mnist_available: try: @@ -156,9 +158,9 @@ class MNISTDataModule(LightningDataModule): normalize: bool = False, seed: int = 42, batch_size: int = 32, - *args, - **kwargs, - ): + *args: Any, + **kwargs: Any, + ) -> None: """ Args: data_dir: where to save/load the data @@ -187,22 +189,22 @@ class MNISTDataModule(LightningDataModule): self.dataset_val = ... @property - def num_classes(self): + def num_classes(self) -> int: return 10 - def prepare_data(self): + def prepare_data(self) -> None: """Saves MNIST files to `data_dir`""" MNIST(self.data_dir, train=True, download=True) MNIST(self.data_dir, train=False, download=True) - def setup(self, stage: Optional[str] = None): + def setup(self, stage: Optional[str] = None) -> None: """Split the train and valid dataset.""" extra = dict(transform=self.default_transforms) if self.default_transforms else {} - dataset = MNIST(self.data_dir, train=True, download=False, **extra) + dataset: Dataset = MNIST(self.data_dir, train=True, download=False, **extra) train_length = len(dataset) self.dataset_train, self.dataset_val = random_split(dataset, [train_length - self.val_split, self.val_split]) - def train_dataloader(self): + def train_dataloader(self) -> DataLoader: """MNIST train set removes a subset to use for validation.""" loader = DataLoader( self.dataset_train, @@ -214,7 +216,7 @@ class MNISTDataModule(LightningDataModule): ) return loader - def val_dataloader(self): + def val_dataloader(self) -> DataLoader: """MNIST val set uses a subset of the training set for validation.""" loader = DataLoader( self.dataset_val, @@ -226,7 +228,7 @@ class MNISTDataModule(LightningDataModule): ) return loader - def test_dataloader(self): + def test_dataloader(self) -> DataLoader: """MNIST test set uses the test split.""" extra = dict(transform=self.default_transforms) if self.default_transforms else {} dataset = MNIST(self.data_dir, train=False, download=False, **extra) @@ -241,7 +243,7 @@ class MNISTDataModule(LightningDataModule): return loader @property - def default_transforms(self): + def default_transforms(self) -> Optional[Callable]: if not _TORCHVISION_AVAILABLE: return None if self.normalize: diff --git a/src/pytorch_lightning/utilities/imports.py b/src/pytorch_lightning/utilities/imports.py index afeebed85a..e47da3051e 100644 --- a/src/pytorch_lightning/utilities/imports.py +++ b/src/pytorch_lightning/utilities/imports.py @@ -132,6 +132,7 @@ _TORCH_GREATER_EQUAL_1_12 = _compare_version("torch", operator.ge, "1.12.0", use _APEX_AVAILABLE = _module_available("apex.amp") _BAGUA_AVAILABLE = _package_available("bagua") +_DALI_AVAILABLE = _module_available("nvidia.dali") _DEEPSPEED_AVAILABLE = _package_available("deepspeed") _DEEPSPEED_GREATER_EQUAL_0_5_9 = _DEEPSPEED_AVAILABLE and _compare_version("deepspeed", operator.ge, "0.5.9") _DEEPSPEED_GREATER_EQUAL_0_6 = _DEEPSPEED_AVAILABLE and _compare_version("deepspeed", operator.ge, "0.6.0") diff --git a/tests/README.md b/tests/README.md index 2951896748..606bc799db 100644 --- a/tests/README.md +++ b/tests/README.md @@ -41,7 +41,7 @@ This is useful if you do not test against all required dependency versions. **Docker:** Another option is to utilize the [pytorch lightning cuda base docker image](https://hub.docker.com/repository/docker/pytorchlightning/pytorch_lightning/tags?page=1&name=cuda). You can then run: ```bash -python -m pytest pytorch_lightning tests pl_examples -v +python -m pytest src/pytorch_lightning test/unitests_pl -v ``` You can also run a single test as follows: