[bugfix] Add support for CombinedLoader in validation with ddp (#7102)

* add test

* add changelog

* resolve flake8

* remove print
This commit is contained in:
thomas chaton 2021-04-20 09:22:02 +01:00 committed by GitHub
parent 67528c4665
commit 9beec26c3e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 61 additions and 3 deletions

View File

@ -304,6 +304,9 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).
- Fixed metric objects passed directly to `self.log` not being reset correctly ([#7055](https://github.com/PyTorchLightning/pytorch-lightning/pull/7055))
- Fixed `CombinedLoader` in distributed settings for validation / testing ([#7102](https://github.com/PyTorchLightning/pytorch-lightning/pull/7102))
## [1.2.7] - 2021-04-06
### Fixed

View File

@ -108,12 +108,15 @@ class TrainerDataLoadingMixin(ABC):
dataloader.worker_init_fn = partial(pl_worker_init_function, rank=self.global_rank)
def auto_add_sampler(self, dataloader: DataLoader, shuffle: bool) -> DataLoader:
# don't do anything if it's not a dataloader
is_dataloader = isinstance(dataloader, DataLoader)
# don't manipulate iterable datasets
is_iterable_ds = has_iterable_dataset(dataloader)
if isinstance(dataloader, CombinedLoader):
dataloader.loaders = apply_to_collection(dataloader.loaders, DataLoader, self.auto_add_sampler, shuffle)
return dataloader
if not is_dataloader or is_iterable_ds:
return dataloader

View File

@ -19,6 +19,8 @@ from typing import Any, Callable, Optional, Union
import torch
from torch import Tensor
from torch.utils.data import Dataset
from torch.utils.data.dataloader import DataLoader
from torch.utils.data.dataset import IterableDataset
from pytorch_lightning.utilities.apply_func import apply_to_collection
from pytorch_lightning.utilities.cloud_io import get_filesystem
@ -352,7 +354,7 @@ class CombinedLoader(object):
@property
def sampler(self) -> Union[Iterable, Sequence, Mapping]:
"""Return a collections of samplers extracting from loaders."""
return apply_to_collection(self.loaders, Iterable, getattr, 'sampler', None, wrong_dtype=(Sequence, Mapping))
return apply_to_collection(self.loaders, (DataLoader, IterableDataset), getattr, 'sampler', None)
def _wrap_loaders_max_size_cycle(self) -> Any:
"""

View File

@ -11,12 +11,18 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from collections import Sequence
from unittest import mock
import pytest
import torch
from torch.utils.data import TensorDataset
from torch.utils.data import DataLoader, TensorDataset
from torch.utils.data.dataset import Dataset
from torch.utils.data.distributed import DistributedSampler
from torch.utils.data.sampler import Sampler
from pytorch_lightning import Trainer
from pytorch_lightning.trainer.supporters import (
_nested_calc_num_data,
CombinedDataset,
@ -25,6 +31,7 @@ from pytorch_lightning.trainer.supporters import (
CycleIterator,
TensorRunningAccum,
)
from pytorch_lightning.utilities.apply_func import apply_to_collection
from pytorch_lightning.utilities.exceptions import MisconfigurationException
@ -237,3 +244,46 @@ def test_nested_calc_num_data(input_data, compute_func, expected_length):
calculated_length = _nested_calc_num_data(input_data, compute_func)
assert calculated_length == expected_length
@mock.patch.dict(os.environ, {"CUDA_VISIBLE_DEVICES": "0,1", "PL_TRAINER_GPUS": "2"})
@mock.patch('torch.cuda.device_count', return_value=2)
@mock.patch('torch.cuda.is_available', return_value=True)
def test_combined_data_loader_validation_test(cuda_available_mock, device_count_mock, tmpdir):
"""
This test makes sure distributed sampler has been properly injected in dataloaders
when using CombinedLoader
"""
class CustomDataset(Dataset):
def __init__(self, data):
self.data = data
def __len__(self):
return len(self.data)
def __getitem__(self, index):
return self.data[index]
dataloader = CombinedLoader({
"a": DataLoader(CustomDataset(range(10))),
"b": {
"c": DataLoader(CustomDataset(range(10))),
"d": DataLoader(CustomDataset(range(10)))
},
"e": [DataLoader(CustomDataset(range(10))),
DataLoader(CustomDataset(range(10)))]
})
trainer = Trainer(replace_sampler_ddp=True, accelerator="ddp", gpus=2)
dataloader = trainer.auto_add_sampler(dataloader, shuffle=True)
_count = 0
def _assert_distributed_sampler(v):
nonlocal _count
_count += 1
assert isinstance(v, DistributedSampler)
apply_to_collection(dataloader.sampler, Sampler, _assert_distributed_sampler)
assert _count == 5