docs (#4107)
This commit is contained in:
parent
6156125720
commit
9af0b0bdc8
|
@ -7,8 +7,9 @@
|
|||
|
||||
.. _metrics:
|
||||
|
||||
#######
|
||||
Metrics
|
||||
=======
|
||||
#######
|
||||
|
||||
``pytorch_lightning.metrics`` is a Metrics API created for easy metric development and usage in
|
||||
PyTorch and PyTorch Lightning. It is rigorously tested for all edge cases and includes a growing list of
|
||||
|
@ -104,8 +105,9 @@ This metrics API is independent of PyTorch Lightning. Metrics can directly be us
|
|||
# total accuracy over all validation batches
|
||||
total_valid_accuracy = valid_accuracy.compute()
|
||||
|
||||
*********************
|
||||
Implementing a Metric
|
||||
---------------------
|
||||
*********************
|
||||
|
||||
To implement your custom metric, subclass the base ``Metric`` class and implement the following methods:
|
||||
|
||||
|
@ -142,35 +144,40 @@ Example implementation:
|
|||
def compute(self):
|
||||
return self.correct.float() / self.total
|
||||
|
||||
Metric
|
||||
^^^^^^
|
||||
**********
|
||||
Metric API
|
||||
**********
|
||||
|
||||
.. autoclass:: pytorch_lightning.metrics.Metric
|
||||
:noindex:
|
||||
|
||||
*************
|
||||
Class metrics
|
||||
*************
|
||||
|
||||
Classification Metrics
|
||||
----------------------
|
||||
|
||||
Accuracy
|
||||
^^^^^^^^
|
||||
~~~~~~~~
|
||||
|
||||
.. autoclass:: pytorch_lightning.metrics.classification.Accuracy
|
||||
:noindex:
|
||||
|
||||
Precision
|
||||
^^^^^^^^^
|
||||
~~~~~~~~~
|
||||
|
||||
.. autoclass:: pytorch_lightning.metrics.classification.Precision
|
||||
:noindex:
|
||||
|
||||
Recall
|
||||
^^^^^^
|
||||
~~~~~~
|
||||
|
||||
.. autoclass:: pytorch_lightning.metrics.classification.Recall
|
||||
:noindex:
|
||||
|
||||
Fbeta
|
||||
^^^^^
|
||||
~~~~~
|
||||
|
||||
.. autoclass:: pytorch_lightning.metrics.classification.Fbeta
|
||||
:noindex:
|
||||
|
@ -179,35 +186,35 @@ Regression Metrics
|
|||
------------------
|
||||
|
||||
MeanSquaredError
|
||||
^^^^^^^^^^^^^^^^
|
||||
~~~~~~~~~~~~~~~~
|
||||
|
||||
.. autoclass:: pytorch_lightning.metrics.regression.MeanSquaredError
|
||||
:noindex:
|
||||
|
||||
|
||||
MeanAbsoluteError
|
||||
^^^^^^^^^^^^^^^^^
|
||||
~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. autoclass:: pytorch_lightning.metrics.regression.MeanAbsoluteError
|
||||
:noindex:
|
||||
|
||||
|
||||
MeanSquaredLogError
|
||||
^^^^^^^^^^^^^^^^^^^
|
||||
~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. autoclass:: pytorch_lightning.metrics.regression.MeanSquaredLogError
|
||||
:noindex:
|
||||
|
||||
|
||||
ExplainedVariance
|
||||
^^^^^^^^^^^^^^^^^
|
||||
~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. autoclass:: pytorch_lightning.metrics.regression.ExplainedVariance
|
||||
:noindex:
|
||||
|
||||
|
||||
******************
|
||||
Functional Metrics
|
||||
==================
|
||||
******************
|
||||
|
||||
The functional metrics follow the simple paradigm input in, output out. This means, they don't provide any advanced mechanisms for syncing across DDP nodes or aggregation over batches. They simply compute the metric value based on the given inputs.
|
||||
|
||||
|
@ -218,133 +225,133 @@ Classification
|
|||
--------------
|
||||
|
||||
accuracy [func]
|
||||
^^^^^^^^^^^^^^^
|
||||
~~~~~~~~~~~~~~~
|
||||
|
||||
.. autofunction:: pytorch_lightning.metrics.functional.classification.accuracy
|
||||
:noindex:
|
||||
|
||||
|
||||
auc [func]
|
||||
^^^^^^^^^^
|
||||
~~~~~~~~~~
|
||||
|
||||
.. autofunction:: pytorch_lightning.metrics.functional.classification.auc
|
||||
:noindex:
|
||||
|
||||
|
||||
auroc [func]
|
||||
^^^^^^^^^^^^
|
||||
~~~~~~~~~~~~
|
||||
|
||||
.. autofunction:: pytorch_lightning.metrics.functional.classification.auroc
|
||||
:noindex:
|
||||
|
||||
|
||||
average_precision [func]
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. autofunction:: pytorch_lightning.metrics.functional.classification.average_precision
|
||||
:noindex:
|
||||
|
||||
|
||||
confusion_matrix [func]
|
||||
^^^^^^^^^^^^^^^^^^^^^^^
|
||||
~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. autofunction:: pytorch_lightning.metrics.functional.classification.confusion_matrix
|
||||
:noindex:
|
||||
|
||||
|
||||
dice_score [func]
|
||||
^^^^^^^^^^^^^^^^^
|
||||
~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. autofunction:: pytorch_lightning.metrics.functional.classification.dice_score
|
||||
:noindex:
|
||||
|
||||
|
||||
f1_score [func]
|
||||
^^^^^^^^^^^^^^^
|
||||
~~~~~~~~~~~~~~~
|
||||
|
||||
.. autofunction:: pytorch_lightning.metrics.functional.classification.f1_score
|
||||
:noindex:
|
||||
|
||||
|
||||
fbeta_score [func]
|
||||
^^^^^^^^^^^^^^^^^^
|
||||
~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. autofunction:: pytorch_lightning.metrics.functional.classification.fbeta_score
|
||||
:noindex:
|
||||
|
||||
|
||||
iou [func]
|
||||
^^^^^^^^^^
|
||||
~~~~~~~~~~
|
||||
|
||||
.. autofunction:: pytorch_lightning.metrics.functional.classification.iou
|
||||
:noindex:
|
||||
|
||||
|
||||
multiclass_roc [func]
|
||||
^^^^^^^^^^^^^^^^^^^^^
|
||||
~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. autofunction:: pytorch_lightning.metrics.functional.classification.multiclass_roc
|
||||
:noindex:
|
||||
|
||||
|
||||
precision [func]
|
||||
^^^^^^^^^^^^^^^^
|
||||
~~~~~~~~~~~~~~~~
|
||||
|
||||
.. autofunction:: pytorch_lightning.metrics.functional.classification.precision
|
||||
:noindex:
|
||||
|
||||
|
||||
precision_recall [func]
|
||||
^^^^^^^^^^^^^^^^^^^^^^^
|
||||
~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. autofunction:: pytorch_lightning.metrics.functional.classification.precision_recall
|
||||
:noindex:
|
||||
|
||||
|
||||
precision_recall_curve [func]
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. autofunction:: pytorch_lightning.metrics.functional.classification.precision_recall_curve
|
||||
:noindex:
|
||||
|
||||
|
||||
recall [func]
|
||||
^^^^^^^^^^^^^
|
||||
~~~~~~~~~~~~~
|
||||
|
||||
.. autofunction:: pytorch_lightning.metrics.functional.classification.recall
|
||||
:noindex:
|
||||
|
||||
|
||||
roc [func]
|
||||
^^^^^^^^^^
|
||||
~~~~~~~~~~
|
||||
|
||||
.. autofunction:: pytorch_lightning.metrics.functional.classification.roc
|
||||
:noindex:
|
||||
|
||||
|
||||
stat_scores [func]
|
||||
^^^^^^^^^^^^^^^^^^
|
||||
~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. autofunction:: pytorch_lightning.metrics.functional.classification.stat_scores
|
||||
:noindex:
|
||||
|
||||
|
||||
stat_scores_multiple_classes [func]
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. autofunction:: pytorch_lightning.metrics.functional.classification.stat_scores_multiple_classes
|
||||
:noindex:
|
||||
|
||||
|
||||
to_categorical [func]
|
||||
^^^^^^^^^^^^^^^^^^^^^
|
||||
~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. autofunction:: pytorch_lightning.metrics.functional.classification.to_categorical
|
||||
:noindex:
|
||||
|
||||
|
||||
to_onehot [func]
|
||||
^^^^^^^^^^^^^^^^
|
||||
~~~~~~~~~~~~~~~~
|
||||
|
||||
.. autofunction:: pytorch_lightning.metrics.functional.classification.to_onehot
|
||||
:noindex:
|
||||
|
@ -354,42 +361,42 @@ Regression
|
|||
----------
|
||||
|
||||
mae [func]
|
||||
^^^^^^^^^^
|
||||
~~~~~~~~~~
|
||||
|
||||
.. autofunction:: pytorch_lightning.metrics.functional.regression.mae
|
||||
:noindex:
|
||||
|
||||
|
||||
mse [func]
|
||||
^^^^^^^^^^
|
||||
~~~~~~~~~~
|
||||
|
||||
.. autofunction:: pytorch_lightning.metrics.functional.regression.mse
|
||||
:noindex:
|
||||
|
||||
|
||||
psnr [func]
|
||||
^^^^^^^^^^^
|
||||
~~~~~~~~~~~
|
||||
|
||||
.. autofunction:: pytorch_lightning.metrics.functional.regression.psnr
|
||||
:noindex:
|
||||
|
||||
|
||||
rmse [func]
|
||||
^^^^^^^^^^^
|
||||
~~~~~~~~~~~
|
||||
|
||||
.. autofunction:: pytorch_lightning.metrics.functional.regression.rmse
|
||||
:noindex:
|
||||
|
||||
|
||||
rmsle [func]
|
||||
^^^^^^^^^^^^
|
||||
~~~~~~~~~~~~
|
||||
|
||||
.. autofunction:: pytorch_lightning.metrics.functional.regression.rmsle
|
||||
:noindex:
|
||||
|
||||
|
||||
ssim [func]
|
||||
^^^^^^^^^^^
|
||||
~~~~~~~~~~~
|
||||
|
||||
.. autofunction:: pytorch_lightning.metrics.functional.regression.mae
|
||||
:noindex:
|
||||
|
@ -399,17 +406,17 @@ NLP
|
|||
---
|
||||
|
||||
bleu_score [func]
|
||||
^^^^^^^^^^^^^^^^^
|
||||
~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. autofunction:: pytorch_lightning.metrics.functional.nlp.bleu_score
|
||||
:noindex:
|
||||
|
||||
|
||||
Self-Supervised
|
||||
---------------
|
||||
Pairwise
|
||||
--------
|
||||
|
||||
embedding_similarity [func]
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. autofunction:: pytorch_lightning.metrics.functional.self_supervised.embedding_similarity
|
||||
:noindex:
|
||||
|
|
Loading…
Reference in New Issue