clean AMP logic (#5994)
* clean AMP logic * cleaning * ... * ... * Even apex
This commit is contained in:
parent
b40d414463
commit
936f42aa1c
|
@ -298,46 +298,42 @@ class BackendConnector(object):
|
|||
if self.on_tpu:
|
||||
return TPUHalfPrecisionPlugin()
|
||||
|
||||
if self.amp_type == "native":
|
||||
if not _NATIVE_AMP_AVAILABLE:
|
||||
rank_zero_warn(
|
||||
"You have asked for native AMP but your PyTorch version does not support it."
|
||||
" Consider upgrading with `pip install torch>=1.6`."
|
||||
" We will attempt to use NVIDIA Apex for this session."
|
||||
)
|
||||
if not _APEX_AVAILABLE and self.on_cpu:
|
||||
raise MisconfigurationException(
|
||||
"You have asked for native AMP on CPU, but AMP is only available on GPU."
|
||||
)
|
||||
self.amp_type = "apex"
|
||||
elif self.on_cpu:
|
||||
self.amp_type = AMPType(self.amp_type)
|
||||
if self.amp_type == AMPType.NATIVE:
|
||||
if self.on_cpu:
|
||||
raise MisconfigurationException(
|
||||
"You have asked for native AMP on CPU, but AMP is only available on GPU."
|
||||
)
|
||||
elif not _NATIVE_AMP_AVAILABLE:
|
||||
msg = "You have asked for native AMP but your PyTorch version does not support it." \
|
||||
" Consider upgrading with `pip install torch>=1.6`."
|
||||
if _APEX_AVAILABLE:
|
||||
self.amp_type = AMPType.APEX
|
||||
msg += " We will attempt to use NVIDIA Apex for this session."
|
||||
rank_zero_warn(msg)
|
||||
else:
|
||||
raise MisconfigurationException(msg)
|
||||
else:
|
||||
log.info("Using native 16bit precision.")
|
||||
if isinstance(self.training_type_plugin, (DDPShardedPlugin, DDPSpawnShardedPlugin)):
|
||||
return ShardedNativeMixedPrecisionPlugin()
|
||||
self.amp_type = AMPType.NATIVE
|
||||
return NativeMixedPrecisionPlugin()
|
||||
|
||||
if self.amp_type == "apex":
|
||||
if self.amp_type == AMPType.APEX:
|
||||
if not _APEX_AVAILABLE:
|
||||
rank_zero_warn(
|
||||
raise MisconfigurationException(
|
||||
"You have asked for Apex AMP but you have not installed it yet."
|
||||
" Install apex first using this guide: https://github.com/NVIDIA/apex#linux"
|
||||
)
|
||||
else:
|
||||
if isinstance(self.training_type_plugin, (DDPShardedPlugin, DDPSpawnShardedPlugin)):
|
||||
raise MisconfigurationException(
|
||||
"Sharded Plugin is not supported with Apex AMP, "
|
||||
"please using native AMP for 16-bit precision."
|
||||
)
|
||||
log.info("Using APEX 16bit precision.")
|
||||
self.amp_type = AMPType.APEX
|
||||
return ApexMixedPrecisionPlugin(self.amp_level)
|
||||
else:
|
||||
raise NotImplementedError("We only support precisions 32 and 16!")
|
||||
if isinstance(self.training_type_plugin, (DDPShardedPlugin, DDPSpawnShardedPlugin)):
|
||||
raise MisconfigurationException(
|
||||
"Sharded Plugin is not supported with Apex AMP,"
|
||||
" please using native AMP for 16-bit precision."
|
||||
)
|
||||
log.info("Using APEX 16bit precision.")
|
||||
return ApexMixedPrecisionPlugin(self.amp_level)
|
||||
|
||||
raise NotImplementedError("We only support precisions 32 and 16!")
|
||||
|
||||
def select_training_type_plugin(self) -> TrainingTypePlugin:
|
||||
if self.use_ddp2:
|
||||
|
|
|
@ -18,7 +18,6 @@ import pytest
|
|||
import torch
|
||||
from torch import optim
|
||||
|
||||
import tests.helpers.pipelines as tpipes
|
||||
import tests.helpers.utils as tutils
|
||||
from pytorch_lightning import Trainer
|
||||
from pytorch_lightning.plugins.environments import SLURMEnvironment
|
||||
|
@ -155,21 +154,11 @@ def test_amp_gpu_ddp_slurm_managed(tmpdir):
|
|||
assert generated == 'abc23'
|
||||
|
||||
|
||||
@pytest.mark.skipif(torch.cuda.is_available(), reason="test is restricted only on CPU")
|
||||
def test_cpu_model_with_amp(tmpdir):
|
||||
"""Make sure model trains on CPU."""
|
||||
trainer_options = dict(
|
||||
default_root_dir=tmpdir,
|
||||
progress_bar_refresh_rate=0,
|
||||
max_epochs=1,
|
||||
limit_train_batches=0.4,
|
||||
limit_val_batches=0.4,
|
||||
precision=16,
|
||||
)
|
||||
|
||||
model = BoringModel()
|
||||
|
||||
with pytest.raises(MisconfigurationException, match="AMP is only available on GPU"):
|
||||
tpipes.run_model_test(trainer_options, model, on_gpu=False)
|
||||
Trainer(precision=16)
|
||||
|
||||
|
||||
@mock.patch.dict(os.environ, {"PL_DEV_DEBUG": "1"})
|
||||
|
|
Loading…
Reference in New Issue