added test for model loading and predicting

This commit is contained in:
William Falcon 2019-07-24 11:51:38 -04:00
parent 926fa206ff
commit 85eaa28872
1 changed files with 40 additions and 26 deletions

View File

@ -54,6 +54,41 @@ def clear_save_dir():
shutil.rmtree(save_dir)
def load_model(exp, save_dir):
# load trained model
tags_path = exp.get_data_path(exp.name, exp.version)
tags_path = os.path.join(tags_path, 'meta_tags.csv')
checkpoints = [x for x in os.listdir(save_dir) if '.ckpt' in x]
weights_dir = os.path.join(save_dir, checkpoints[0])
trained_model = LightningTemplateModel.load_from_metrics(weights_path=weights_dir, tags_csv=tags_path, on_gpu=True)
assert trained_model is not None, 'loading model failed'
return trained_model
def run_prediction(dataloader, trained_model):
# run prediction on 1 batch
for batch in dataloader:
break
x, y = batch
x = x.view(x.size(0), -1)
y_hat = trained_model(x)
# acc
labels_hat = torch.argmax(y_hat, dim=1)
val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0)
val_acc = torch.tensor(val_acc)
val_acc = val_acc.item()
assert val_acc > 0.70, 'this model is expected to get > 0.7 in test set'
def main():
save_dir = init_save_dir()
@ -72,7 +107,7 @@ def main():
progress_bar=True,
experiment=exp,
max_nb_epochs=1,
train_percent_check=0.1,
train_percent_check=0.2,
val_percent_check=0.1,
gpus=[0, 1],
distributed_backend='ddp',
@ -84,32 +119,11 @@ def main():
# correct result and ok accuracy
assert result == 1, 'amp + ddp model failed to complete'
# load trained model
pdb.set_trace()
tags_path = exp.get_data_path(exp.name, exp.version)
tags_path = os.path.join(tags_path, 'meta_tags.csv')
# test model loading
pretrained_model = load_model(exp, save_dir)
pdb.set_trace()
checkpoints = [x for x in os.listdir(save_dir) if '.ckpt' in x]
weights_dir = os.path.join(save_dir, checkpoints[0])
trained_model = LightningTemplateModel.load_from_metrics(weights_path=weights_dir, tags_csv=tags_path, on_gpu=True)
# run prediction
for batch in model.test_dataloader:
break
x, y = batch
x = x.view(x.size(0), -1)
y_hat = trained_model(x)
# acc
labels_hat = torch.argmax(y_hat, dim=1)
val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0)
val_acc = torch.tensor(val_acc)
print(val_acc)
# test model preds
run_prediction(model.test_dataloader, pretrained_model)
clear_save_dir()