Remove orphaned docs pages (#19555)

This commit is contained in:
awaelchli 2024-03-13 02:19:05 +01:00 committed by GitHub
parent d2ab93e8a9
commit 8549a932f7
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
8 changed files with 13 additions and 1126 deletions

View File

@ -1,14 +1,14 @@
:orphan:
Ecosystem CI
============
############
`Ecosystem CI <https://github.com/Lightning-AI/ecosystem-ci>`_ automates issue discovery for your projects against Lightning nightly and releases.
It is a lightweight repository that provides easy configuration of Continues Integration running on CPUs and GPUs.
Any user who wants to keep their project aligned with current and future Lightning releases can use the EcoSystem CI to configure their integrations.
Read more: `Stay Ahead of Breaking Changes with the New Lightning Ecosystem CI <https://devblog.pytorchlightning.ai/stay-ahead-of-breaking-changes-with-the-new-lightning-ecosystem-ci-b7e1cf78a6c7>`_
--------------
----
***********************
Integrate a New Project

View File

@ -7,6 +7,7 @@
../generated/CONTRIBUTING.md
../generated/BECOMING_A_CORE_CONTRIBUTOR.md
governance
ecosystem-ci
../versioning
../past_versions
../generated/CHANGELOG.md
@ -35,7 +36,7 @@ Community
:height: 100
.. displayitem::
:header: How to Become a core contributor
:header: How to become a core contributor
:description: Steps to be a core contributor
:col_css: col-md-12
:button_link: ../generated/BECOMING_A_CORE_CONTRIBUTOR.html
@ -69,6 +70,13 @@ Community
:button_link: ../generated/CHANGELOG.html
:height: 100
.. displayitem::
:header: Ecosystem CI
:description: Automate issue discovery for your projects against Lightning nightly and releases
:col_css: col-md-12
:button_link: ecosystem-ci.html
:height: 100
.. raw:: html
</div>

View File

@ -1,817 +0,0 @@
:orphan:
#################
Conversational AI
#################
These are amazing ecosystems to help with Automatic Speech Recognition (ASR), Natural Language Processing (NLP), and Text to speech (TTS).
----
****
NeMo
****
`NVIDIA NeMo <https://github.com/NVIDIA/NeMo>`_ is a toolkit for building new State-of-the-Art
Conversational AI models. NeMo has separate collections for Automatic Speech Recognition (ASR),
Natural Language Processing (NLP), and Text-to-Speech (TTS) models. Each collection consists of
prebuilt modules that include everything needed to train on your data.
Every module can easily be customized, extended, and composed to create new Conversational AI
model architectures.
Conversational AI architectures are typically very large and require a lot of data and compute
for training. NeMo uses PyTorch Lightning for easy and performant multi-GPU/multi-node
mixed-precision training.
.. note:: Every NeMo model is a LightningModule that comes equipped with all supporting infrastructure for training and reproducibility.
----------
NeMo Models
===========
NeMo Models contain everything needed to train and reproduce state of the art Conversational AI
research and applications, including:
- neural network architectures
- datasets/data loaders
- data preprocessing/postprocessing
- data augmentors
- optimizers and schedulers
- tokenizers
- language models
NeMo uses `Hydra <https://hydra.cc/>`_ for configuring both NeMo models and the PyTorch Lightning Trainer.
Depending on the domain and application, many different AI libraries will have to be configured
to build the application. Hydra makes it easy to bring all of these libraries together
so that each can be configured from .yaml or the Hydra CLI.
.. note:: Every NeMo model has an example configuration file and a corresponding script that contains all configurations needed for training.
The end result of using NeMo, PyTorch Lightning, and Hydra is that
NeMo models all have the same look and feel. This makes it easy to do Conversational AI research
across multiple domains. NeMo models are also fully compatible with the PyTorch ecosystem.
Installing NeMo
---------------
Before installing NeMo, please install Cython first.
.. code-block:: bash
pip install Cython
For ASR and TTS models, also install these linux utilities.
.. code-block:: bash
apt-get update && apt-get install -y libsndfile1 ffmpeg
Then installing the latest NeMo release is a simple pip install.
.. code-block:: bash
pip install nemo_toolkit[all]==1.0.0b1
To install the main branch from GitHub:
.. code-block:: bash
python -m pip install git+https://github.com/NVIDIA/NeMo.git@main#egg=nemo_toolkit[all]
To install from a local clone of NeMo:
.. code-block:: bash
./reinstall.sh # from cloned NeMo's git root
For Docker users, the NeMo container is available on
`NGC <https://catalog.ngc.nvidia.com/orgs/nvidia/collections/nemotrainingframework>`_.
.. code-block:: bash
docker pull nvcr.io/nvidia/nemo:v1.0.0b1
.. code-block:: bash
docker run --runtime=nvidia -it --rm -v --shm-size=8g -p 8888:8888 -p 6006:6006 --ulimit memlock=-1 --ulimit stack=67108864 nvcr.io/nvidia/nemo:v1.0.0b1
Experiment Manager
------------------
NeMo's Experiment Manager leverages PyTorch Lightning for model checkpointing,
TensorBoard Logging, and Weights and Biases logging. The Experiment Manager is included by default
in all NeMo example scripts.
.. code-block:: python
exp_manager(trainer, cfg.get("exp_manager", None))
And is configurable via .yaml with Hydra.
.. code-block:: bash
exp_manager:
exp_dir: null
name: *name
create_tensorboard_logger: True
create_checkpoint_callback: True
Optionally launch Tensorboard to view training results in ./nemo_experiments (by default).
.. code-block:: bash
tensorboard --bind_all --logdir nemo_experiments
--------
Automatic Speech Recognition (ASR)
==================================
Everything needed to train Convolutional ASR models is included with NeMo.
NeMo supports multiple Speech Recognition architectures, including Jasper and QuartzNet.
`NeMo Speech Models <https://ngc.nvidia.com/catalog/models/nvidia:nemospeechmodels>`_
can be trained from scratch on custom datasets or
fine-tuned using pre-trained checkpoints trained on thousands of hours of audio
that can be restored for immediate use.
Some typical ASR tasks are included with NeMo:
- `Audio transcription <https://github.com/NVIDIA/NeMo/blob/v1.0.0b1/tutorials/asr/01_ASR_with_NeMo.ipynb>`_
- `Byte Pair/Word Piece Training <https://github.com/NVIDIA/NeMo/blob/v1.0.0b1/examples/asr/speech_to_text_bpe.py>`_
- `Speech Commands <https://github.com/NVIDIA/NeMo/blob/v1.0.0b1/tutorials/asr/03_Speech_Commands.ipynb>`_
- `Voice Activity Detection <https://github.com/NVIDIA/NeMo/blob/v1.0.0b1/tutorials/asr/06_Voice_Activiy_Detection.ipynb>`_
- `Speaker Recognition <https://github.com/NVIDIA/NeMo/blob/v1.0.0b1/examples/speaker_recognition/speaker_reco.py>`_
See this `asr notebook <https://github.com/NVIDIA/NeMo/blob/v1.0.0b1/tutorials/asr/01_ASR_with_NeMo.ipynb>`_
for a full tutorial on doing ASR with NeMo, PyTorch Lightning, and Hydra.
Specify ASR Model Configurations with YAML File
-----------------------------------------------
NeMo Models and the PyTorch Lightning Trainer can be fully configured from .yaml files using Hydra.
See this `asr config <https://github.com/NVIDIA/NeMo/blob/v1.0.0b1/examples/asr/conf/config.yaml>`_
for the entire speech to text .yaml file.
.. code-block:: yaml
# configure the PyTorch Lightning Trainer
trainer:
gpus: 0 # number of gpus
max_epochs: 5
max_steps: null # computed at runtime if not set
num_nodes: 1
accelerator: ddp
...
# configure the ASR model
model:
...
encoder:
cls: nemo.collections.asr.modules.ConvASREncoder
params:
feat_in: *n_mels
activation: relu
conv_mask: true
jasper:
- filters: 128
repeat: 1
kernel: [11]
stride: [1]
dilation: [1]
dropout: *dropout
...
# all other configuration, data, optimizer, preprocessor, etc
...
Developing ASR Model From Scratch
---------------------------------
`speech_to_text.py <https://github.com/NVIDIA/NeMo/blob/v1.0.0b1/examples/asr/speech_to_text.py>`_
.. code-block:: python
# hydra_runner calls hydra.main and is useful for multi-node experiments
@hydra_runner(config_path="conf", config_name="config")
def main(cfg):
trainer = Trainer(**cfg.trainer)
asr_model = EncDecCTCModel(cfg.model, trainer)
trainer.fit(asr_model)
Hydra makes every aspect of the NeMo model,
including the PyTorch Lightning Trainer, customizable from the command line.
.. code-block:: bash
python NeMo/examples/asr/speech_to_text.py --config-name=quartznet_15x5 \
trainer.accelerator=gpu \
trainer.devices=4 \
trainer.max_epochs=128 \
+trainer.precision=16 \
model.train_ds.manifest_filepath=<PATH_TO_DATA>/librispeech-train-all.json \
model.validation_ds.manifest_filepath=<PATH_TO_DATA>/librispeech-dev-other.json \
model.train_ds.batch_size=64 \
+model.validation_ds.num_workers=16 \
+model.train_ds.num_workers=16
.. note:: Training NeMo ASR models can take days/weeks so it is highly recommended to use multiple GPUs and multiple nodes with the PyTorch Lightning Trainer.
Using State-Of-The-Art Pre-trained ASR Model
--------------------------------------------
Transcribe audio with QuartzNet model pretrained on ~3300 hours of audio.
.. code-block:: python
quartznet = EncDecCTCModel.from_pretrained("QuartzNet15x5Base-En")
files = ["path/to/my.wav"] # file duration should be less than 25 seconds
for fname, transcription in zip(files, quartznet.transcribe(paths2audio_files=files)):
print(f"Audio in {fname} was recognized as: {transcription}")
To see the available pretrained checkpoints:
.. code-block:: python
EncDecCTCModel.list_available_models()
NeMo ASR Model Under the Hood
-----------------------------
Any aspect of ASR training or model architecture design can easily be customized
with PyTorch Lightning since every NeMo model is a Lightning Module.
.. code-block:: python
class EncDecCTCModel(ASRModel):
"""Base class for encoder decoder CTC-based models."""
...
def forward(self, input_signal, input_signal_length):
processed_signal, processed_signal_len = self.preprocessor(
input_signal=input_signal,
length=input_signal_length,
)
# Spec augment is not applied during evaluation/testing
if self.spec_augmentation is not None and self.training:
processed_signal = self.spec_augmentation(input_spec=processed_signal)
encoded, encoded_len = self.encoder(audio_signal=processed_signal, length=processed_signal_len)
log_probs = self.decoder(encoder_output=encoded)
greedy_predictions = log_probs.argmax(dim=-1, keepdim=False)
return log_probs, encoded_len, greedy_predictions
# PTL-specific methods
def training_step(self, batch, batch_nb):
audio_signal, audio_signal_len, transcript, transcript_len = batch
log_probs, encoded_len, predictions = self.forward(
input_signal=audio_signal, input_signal_length=audio_signal_len
)
loss_value = self.loss(
log_probs=log_probs, targets=transcript, input_lengths=encoded_len, target_lengths=transcript_len
)
wer_num, wer_denom = self._wer(predictions, transcript, transcript_len)
self.log_dict(
{
"train_loss": loss_value,
"training_batch_wer": wer_num / wer_denom,
"learning_rate": self._optimizer.param_groups[0]["lr"],
}
)
return loss_value
Neural Types in NeMo ASR
------------------------
NeMo Models and Neural Modules come with Neural Type checking.
Neural type checking is extremely useful when combining many different neural
network architectures for a production-grade application.
.. code-block:: python
@property
def input_types(self) -> Optional[Dict[str, NeuralType]]:
if hasattr(self.preprocessor, "_sample_rate"):
audio_eltype = AudioSignal(freq=self.preprocessor._sample_rate)
else:
audio_eltype = AudioSignal()
return {
"input_signal": NeuralType(("B", "T"), audio_eltype),
"input_signal_length": NeuralType(tuple("B"), LengthsType()),
}
@property
def output_types(self) -> Optional[Dict[str, NeuralType]]:
return {
"outputs": NeuralType(("B", "T", "D"), LogprobsType()),
"encoded_lengths": NeuralType(tuple("B"), LengthsType()),
"greedy_predictions": NeuralType(("B", "T"), LabelsType()),
}
--------
Natural Language Processing (NLP)
=================================
Everything needed to finetune BERT-like language models for NLP tasks is included with NeMo.
`NeMo NLP Models <https://ngc.nvidia.com/catalog/models/nvidia:nemonlpmodels>`_
include `HuggingFace Transformers <https://github.com/huggingface/transformers>`_
and `NVIDIA Megatron-LM <https://github.com/NVIDIA/Megatron-LM>`_ BERT and Bio-Megatron models.
NeMo can also be used for pretraining BERT-based language models from HuggingFace.
Any of the HuggingFace encoders or Megatron-LM encoders can easily be used for the NLP tasks
that are included with NeMo:
- `Glue Benchmark (All tasks) <https://github.com/NVIDIA/NeMo/blob/v1.0.0b1/tutorials/nlp/GLUE_Benchmark.ipynb>`_
- `Intent Slot Classification <https://github.com/NVIDIA/NeMo/tree/v1.0.0b1/examples/nlp/intent_slot_classification>`_
- `Language Modeling (BERT Pretraining) <https://github.com/NVIDIA/NeMo/blob/v1.0.0b1/tutorials/nlp/01_Pretrained_Language_Models_for_Downstream_Tasks.ipynb>`_
- `Question Answering <https://github.com/NVIDIA/NeMo/blob/v1.0.0b1/tutorials/nlp/Question_Answering_Squad.ipynb>`_
- `Text Classification <https://github.com/NVIDIA/NeMo/tree/v1.0.0b1/examples/nlp/text_classification>`_ (including Sentiment Analysis)
- `Token Classification <https://github.com/NVIDIA/NeMo/tree/v1.0.0b1/examples/nlp/token_classification>`_ (including Named Entity Recognition)
- `Punctuation and Capitalization <https://github.com/NVIDIA/NeMo/blob/v1.0.0b1/tutorials/nlp/Punctuation_and_Capitalization.ipynb>`_
Named Entity Recognition (NER)
------------------------------
NER (or more generally token classification) is the NLP task of detecting and classifying key information (entities) in text.
This task is very popular in Healthcare and Finance. In finance, for example, it can be important to identify
geographical, geopolitical, organizational, persons, events, and natural phenomenon entities.
See this `NER notebook <https://github.com/NVIDIA/NeMo/blob/v1.0.0b1/tutorials/nlp/Token_Classification_Named_Entity_Recognition.ipynb>`_
for a full tutorial on doing NER with NeMo, PyTorch Lightning, and Hydra.
Specify NER Model Configurations with YAML File
-----------------------------------------------
.. note:: NeMo Models and the PyTorch Lightning Trainer can be fully configured from .yaml files using Hydra.
See this `token classification config <https://github.com/NVIDIA/NeMo/blob/v1.0.0b1/examples/nlp/token_classification/conf/token_classification_config.yaml>`_
for the entire NER (token classification) .yaml file.
.. code-block:: yaml
# configure any argument of the PyTorch Lightning Trainer
trainer:
gpus: 1 # the number of gpus, 0 for CPU
num_nodes: 1
max_epochs: 5
...
# configure any aspect of the token classification model here
model:
dataset:
data_dir: ??? # /path/to/data
class_balancing: null # choose from [null, weighted_loss]. Weighted_loss enables the weighted class balancing of the loss, may be used for handling unbalanced classes
max_seq_length: 128
...
tokenizer:
tokenizer_name: ${model.language_model.pretrained_model_name} # or sentencepiece
vocab_file: null # path to vocab file
...
# the language model can be from HuggingFace or Megatron-LM
language_model:
pretrained_model_name: bert-base-uncased
lm_checkpoint: null
...
# the classifier for the downstream task
head:
num_fc_layers: 2
fc_dropout: 0.5
activation: 'relu'
...
# all other configuration: train/val/test/ data, optimizer, experiment manager, etc
...
Developing NER Model From Scratch
---------------------------------
`token_classification.py <https://github.com/NVIDIA/NeMo/blob/v1.0.0b1/examples/nlp/token_classification/token_classification.py>`_
.. code-block:: python
# hydra_runner calls hydra.main and is useful for multi-node experiments
@hydra_runner(config_path="conf", config_name="token_classification_config")
def main(cfg: DictConfig) -> None:
trainer = L.Trainer(**cfg.trainer)
model = TokenClassificationModel(cfg.model, trainer=trainer)
trainer.fit(model)
After training, we can do inference with the saved NER model using PyTorch Lightning.
Inference from file:
.. code-block:: python
gpu = 1 if cfg.trainer.gpus != 0 else 0
trainer = L.Trainer(accelerator="gpu", devices=gpu)
model.set_trainer(trainer)
model.evaluate_from_file(
text_file=os.path.join(cfg.model.dataset.data_dir, cfg.model.validation_ds.text_file),
labels_file=os.path.join(cfg.model.dataset.data_dir, cfg.model.validation_ds.labels_file),
output_dir=exp_dir,
add_confusion_matrix=True,
normalize_confusion_matrix=True,
)
Or we can run inference on a few examples:
.. code-block:: python
queries = ["we bought four shirts from the nvidia gear store in santa clara.", "Nvidia is a company in Santa Clara."]
results = model.add_predictions(queries)
for query, result in zip(queries, results):
logging.info(f"Query : {query}")
logging.info(f"Result: {result.strip()}\n")
Hydra makes every aspect of the NeMo model, including the PyTorch Lightning Trainer, customizable from the command line.
.. code-block:: bash
python token_classification.py \
model.language_model.pretrained_model_name=bert-base-cased \
model.head.num_fc_layers=2 \
model.dataset.data_dir=/path/to/my/data \
trainer.max_epochs=5 \
trainer.accelerator=gpu \
trainer.devices=[0,1]
-----------
Tokenizers
----------
Tokenization is the process of converting natural language text into integer arrays
which can be used for machine learning.
For NLP tasks, tokenization is an essential part of data preprocessing.
NeMo supports all BERT-like model tokenizers from
`HuggingFace's AutoTokenizer <https://huggingface.co/transformers/model_doc/auto.html#autotokenizer>`_
and also supports `Google's SentencePieceTokenizer <https://github.com/google/sentencepiece>`_
which can be trained on custom data.
To see the list of supported tokenizers:
.. code-block:: python
from nemo.collections import nlp as nemo_nlp
nemo_nlp.modules.get_tokenizer_list()
See this `tokenizer notebook <https://github.com/NVIDIA/NeMo/blob/v1.0.0b1/tutorials/nlp/02_NLP_Tokenizers.ipynb>`_
for a full tutorial on using tokenizers in NeMo.
Language Models
---------------
Language models are used to extract information from (tokenized) text.
Much of the state-of-the-art in natural language processing is achieved
by fine-tuning pretrained language models on the downstream task.
With NeMo, you can either `pretrain <https://github.com/NVIDIA/NeMo/blob/v1.0.0b1/examples/nlp/language_modeling/bert_pretraining.py>`_
a BERT model on your data or use a pretrained language model from `HuggingFace Transformers <https://github.com/huggingface/transformers>`_
or `NVIDIA Megatron-LM <https://github.com/NVIDIA/Megatron-LM>`_.
To see the list of language models available in NeMo:
.. code-block:: python
nemo_nlp.modules.get_pretrained_lm_models_list(include_external=True)
Easily switch between any language model in the above list by using `.get_lm_model`.
.. code-block:: python
nemo_nlp.modules.get_lm_model(pretrained_model_name="distilbert-base-uncased")
See this `language model notebook <https://github.com/NVIDIA/NeMo/blob/v1.0.0b1/tutorials/nlp/01_Pretrained_Language_Models_for_Downstream_Tasks.ipynb>`_
for a full tutorial on using pretrained language models in NeMo.
Using a Pre-trained NER Model
-----------------------------
NeMo has pre-trained NER models that can be used
to get started with Token Classification right away.
Models are automatically downloaded from NGC,
cached locally to disk,
and loaded into GPU memory using the `.from_pretrained` method.
.. code-block:: python
# load pre-trained NER model
pretrained_ner_model = TokenClassificationModel.from_pretrained(model_name="NERModel")
# define the list of queries for inference
queries = [
"we bought four shirts from the nvidia gear store in santa clara.",
"Nvidia is a company.",
"The Adventures of Tom Sawyer by Mark Twain is an 1876 novel about a young boy growing "
+ "up along the Mississippi River.",
]
results = pretrained_ner_model.add_predictions(queries)
for query, result in zip(queries, results):
print()
print(f"Query : {query}")
print(f"Result: {result.strip()}\n")
NeMo NER Model Under the Hood
-----------------------------
Any aspect of NLP training or model architecture design can easily be customized with PyTorch Lightning
since every NeMo model is a Lightning Module.
.. code-block:: python
class TokenClassificationModel(ModelPT):
"""
Token Classification Model with BERT, applicable for tasks such as Named Entity Recognition
"""
...
def forward(self, input_ids, token_type_ids, attention_mask):
hidden_states = self.bert_model(
input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask
)
logits = self.classifier(hidden_states=hidden_states)
return logits
# PTL-specific methods
def training_step(self, batch, batch_idx):
"""
Lightning calls this inside the training loop with the data from the training dataloader
passed in as `batch`.
"""
input_ids, input_type_ids, input_mask, subtokens_mask, loss_mask, labels = batch
logits = self(input_ids=input_ids, token_type_ids=input_type_ids, attention_mask=input_mask)
loss = self.loss(logits=logits, labels=labels, loss_mask=loss_mask)
self.log_dict({"train_loss": loss, "lr": self._optimizer.param_groups[0]["lr"]})
return loss
...
Neural Types in NeMo NLP
------------------------
NeMo Models and Neural Modules come with Neural Type checking.
Neural type checking is extremely useful when combining many different neural network architectures
for a production-grade application.
.. code-block:: python
@property
def input_types(self) -> Optional[Dict[str, NeuralType]]:
return self.bert_model.input_types
@property
def output_types(self) -> Optional[Dict[str, NeuralType]]:
return self.classifier.output_types
--------
Text-To-Speech (TTS)
====================
Everything needed to train TTS models and generate audio is included with NeMo.
`NeMo TTS Models <https://ngc.nvidia.com/catalog/models/nvidia:nemottsmodels>`_
can be trained from scratch on your own data or pretrained models can be downloaded
automatically. NeMo currently supports a two step inference procedure.
First, a model is used to generate a mel spectrogram from text.
Second, a model is used to generate audio from a mel spectrogram.
Mel Spectrogram Generators:
- `Tacotron 2 <https://github.com/NVIDIA/NeMo/blob/v1.0.0b1/examples/tts/tacotron2.py>`_
- `Glow-TTS <https://github.com/NVIDIA/NeMo/blob/v1.0.0b1/examples/tts/glow_tts.py>`_
Audio Generators:
- Griffin-Lim
- `WaveGlow <https://github.com/NVIDIA/NeMo/blob/v1.0.0b1/examples/tts/waveglow.py>`_
- `SqueezeWave <https://github.com/NVIDIA/NeMo/blob/v1.0.0b1/examples/tts/squeezewave.py>`_
Specify TTS Model Configurations with YAML File
-----------------------------------------------
.. note:: NeMo Models and PyTorch Lightning Trainer can be fully configured from .yaml files using Hydra.
`tts/conf/glow_tts.yaml <https://github.com/NVIDIA/NeMo/blob/v1.0.0b1/examples/tts/conf/glow_tts.yaml>`_
.. code-block:: yaml
# configure the PyTorch Lightning Trainer
trainer:
gpus: -1 # number of gpus
max_epochs: 350
num_nodes: 1
accelerator: ddp
...
# configure the TTS model
model:
...
encoder:
cls: nemo.collections.tts.modules.glow_tts.TextEncoder
params:
n_vocab: 148
out_channels: *n_mels
hidden_channels: 192
filter_channels: 768
filter_channels_dp: 256
...
# all other configuration, data, optimizer, parser, preprocessor, etc
...
Developing TTS Model From Scratch
---------------------------------
`tts/glow_tts.py <https://github.com/NVIDIA/NeMo/blob/v1.0.0b1/examples/tts/glow_tts.py>`_
.. code-block:: python
# hydra_runner calls hydra.main and is useful for multi-node experiments
@hydra_runner(config_path="conf", config_name="glow_tts")
def main(cfg):
trainer = L.Trainer(**cfg.trainer)
model = GlowTTSModel(cfg=cfg.model, trainer=trainer)
trainer.fit(model)
Hydra makes every aspect of the NeMo model, including the PyTorch Lightning Trainer, customizable from the command line.
.. code-block:: bash
python NeMo/examples/tts/glow_tts.py \
trainer.accelerator=gpu \
trainer.devices=4 \
trainer.max_epochs=400 \
...
train_dataset=/path/to/train/data \
validation_datasets=/path/to/val/data \
model.train_ds.batch_size = 64 \
.. note:: Training NeMo TTS models from scratch can take days or weeks so it is highly recommended to use multiple GPUs and multiple nodes with the PyTorch Lightning Trainer.
Using State-Of-The-Art Pre-trained TTS Model
--------------------------------------------
Generate speech using models trained on `LJSpeech <https://keithito.com/LJ-Speech-Dataset/>`_,
around 24 hours of single speaker data.
See this `TTS notebook <https://github.com/NVIDIA/NeMo/blob/v1.0.0b1/tutorials/tts/1_TTS_inference.ipynb>`_
for a full tutorial on generating speech with NeMo, PyTorch Lightning, and Hydra.
.. code-block:: python
# load pretrained spectrogram model
spec_gen = SpecModel.from_pretrained("GlowTTS-22050Hz").cuda()
# load pretrained Generators
vocoder = WaveGlowModel.from_pretrained("WaveGlow-22050Hz").cuda()
def infer(spec_gen_model, vocder_model, str_input):
with torch.no_grad():
parsed = spec_gen.parse(text_to_generate)
spectrogram = spec_gen.generate_spectrogram(tokens=parsed)
audio = vocoder.convert_spectrogram_to_audio(spec=spectrogram)
if isinstance(spectrogram, torch.Tensor):
spectrogram = spectrogram.to("cpu").numpy()
if len(spectrogram.shape) == 3:
spectrogram = spectrogram[0]
if isinstance(audio, torch.Tensor):
audio = audio.to("cpu").numpy()
return spectrogram, audio
text_to_generate = input("Input what you want the model to say: ")
spec, audio = infer(spec_gen, vocoder, text_to_generate)
To see the available pretrained checkpoints:
.. code-block:: python
# spec generator
GlowTTSModel.list_available_models()
# vocoder
WaveGlowModel.list_available_models()
NeMo TTS Model Under the Hood
-----------------------------
Any aspect of TTS training or model architecture design can easily
be customized with PyTorch Lightning since every NeMo model is a LightningModule.
`glow_tts.py <https://github.com/NVIDIA/NeMo/blob/v1.0.0b1/nemo/collections/tts/models/glow_tts.py>`_
.. code-block:: python
class GlowTTSModel(SpectrogramGenerator):
"""
GlowTTS model used to generate spectrograms from text
Consists of a text encoder and an invertible spectrogram decoder
"""
...
# NeMo models come with neural type checking
@typecheck(
input_types={
"x": NeuralType(("B", "T"), TokenIndex()),
"x_lengths": NeuralType(("B"), LengthsType()),
"y": NeuralType(("B", "D", "T"), MelSpectrogramType(), optional=True),
"y_lengths": NeuralType(("B"), LengthsType(), optional=True),
"gen": NeuralType(optional=True),
"noise_scale": NeuralType(optional=True),
"length_scale": NeuralType(optional=True),
}
)
def forward(self, *, x, x_lengths, y=None, y_lengths=None, gen=False, noise_scale=0.3, length_scale=1.0):
if gen:
return self.glow_tts.generate_spect(
text=x, text_lengths=x_lengths, noise_scale=noise_scale, length_scale=length_scale
)
else:
return self.glow_tts(text=x, text_lengths=x_lengths, spect=y, spect_lengths=y_lengths)
...
def step(self, y, y_lengths, x, x_lengths):
z, y_m, y_logs, logdet, logw, logw_, y_lengths, attn = self(
x=x, x_lengths=x_lengths, y=y, y_lengths=y_lengths, gen=False
)
l_mle, l_length, logdet = self.loss(
z=z,
y_m=y_m,
y_logs=y_logs,
logdet=logdet,
logw=logw,
logw_=logw_,
x_lengths=x_lengths,
y_lengths=y_lengths,
)
loss = sum([l_mle, l_length])
return l_mle, l_length, logdet, loss, attn
# PTL-specific methods
def training_step(self, batch, batch_idx):
y, y_lengths, x, x_lengths = batch
y, y_lengths = self.preprocessor(input_signal=y, length=y_lengths)
l_mle, l_length, logdet, loss, _ = self.step(y, y_lengths, x, x_lengths)
self.log_dict({"l_mle": l_mle, "l_length": l_length, "logdet": logdet}, prog_bar=True)
return loss
...
Neural Types in NeMo TTS
------------------------
NeMo Models and Neural Modules come with Neural Type checking.
Neural type checking is extremely useful when combining many different neural network architectures
for a production-grade application.
.. code-block:: python
@typecheck(
input_types={
"x": NeuralType(("B", "T"), TokenIndex()),
"x_lengths": NeuralType(("B"), LengthsType()),
"y": NeuralType(("B", "D", "T"), MelSpectrogramType(), optional=True),
"y_lengths": NeuralType(("B"), LengthsType(), optional=True),
"gen": NeuralType(optional=True),
"noise_scale": NeuralType(optional=True),
"length_scale": NeuralType(optional=True),
}
)
def forward(self, *, x, x_lengths, y=None, y_lengths=None, gen=False, noise_scale=0.3, length_scale=1.0):
...
--------
Learn More
==========
- Watch the `NVIDIA NeMo Intro Video <https://youtu.be/wBgpMf_KQVw>`_
- Watch the `PyTorch Lightning and NVIDIA NeMo Discussion Video <https://youtu.be/rFAX1-4DSr4>`_
- Visit the `NVIDIA NeMo Developer Website <https://developer.nvidia.com/nvidia-nemo>`_
- Read the `NVIDIA NeMo PyTorch Blog <https://medium.com/pytorch/nvidia-nemo-neural-modules-and-models-for-conversational-ai-d660480d9696>`_
- Download pre-trained `ASR <https://ngc.nvidia.com/catalog/models/nvidia:nemospeechmodels>`_, `NLP <https://ngc.nvidia.com/catalog/models/nvidia:nemonlpmodels>`_, and `TTS <https://ngc.nvidia.com/catalog/models/nvidia:nemospeechmodels>`_ models on `NVIDIA NGC <https://ngc.nvidia.com/>`_ to quickly get started with NeMo.
- Become an expert on Building Conversational AI applications with our `tutorials <https://github.com/NVIDIA/NeMo#tutorials>`_, and `example scripts <https://github.com/NVIDIA/NeMo/tree/v1.0.0b1/examples>`_,
- See our `developer guide <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/>`_ for more information on core NeMo concepts, ASR/NLP/TTS collections, and the NeMo API.
.. note:: NeMo tutorial notebooks can be run on `Google Colab <https://colab.research.google.com/notebooks/intro.ipynb>`_.
NVIDIA `NeMo <https://github.com/NVIDIA/NeMo>`_ is actively being developed on GitHub.
`Contributions <https://github.com/NVIDIA/NeMo/blob/v1.0.0b1/CONTRIBUTING.md>`_ are welcome!

View File

@ -1,92 +0,0 @@
:orphan:
Lightning Bolts
===============
`PyTorch Lightning Bolts <https://lightning-bolts.readthedocs.io/en/latest/>`_, is our official collection
of prebuilt models across many research domains.
.. code-block:: bash
pip install lightning-bolts
In bolts we have:
- A collection of pretrained state-of-the-art models.
- A collection of models designed to bootstrap your research.
- A collection of callbacks, transforms, full datasets.
- All models work on CPUs, TPUs, GPUs and 16-bit precision.
-----------------
Quality control
---------------
The Lightning community builds bolts and contributes them to Bolts.
The lightning team guarantees that contributions are:
- Rigorously Tested (CPUs, GPUs, TPUs).
- Rigorously Documented.
- Standardized via PyTorch Lightning.
- Optimized for speed.
- Checked for correctness.
---------
Example 1: Pretrained, prebuilt models
--------------------------------------
.. code-block:: python
from pl_bolts.models import VAE, GPT2, ImageGPT, PixelCNN
from pl_bolts.models.self_supervised import AMDIM, CPCV2, SimCLR, MocoV2
from pl_bolts.models import LinearRegression, LogisticRegression
from pl_bolts.models.gans import GAN
from pl_bolts.callbacks import PrintTableMetricsCallback
from pl_bolts.datamodules import FashionMNISTDataModule, CIFAR10DataModule, ImagenetDataModule
------------
Example 2: Extend for faster research
-------------------------------------
Bolts are contributed with benchmarks and continuous-integration tests. This means
you can trust the implementations and use them to bootstrap your research much faster.
.. code-block:: python
from pl_bolts.models import ImageGPT
from pl_bolts.self_supervised import SimCLR
class VideoGPT(ImageGPT):
def training_step(self, batch, batch_idx):
x, y = batch
x = _shape_input(x)
logits = self.gpt(x)
simclr_features = self.simclr(x)
# -----------------
# do something new with GPT logits + simclr_features
# -----------------
loss = self.criterion(logits.view(-1, logits.size(-1)), x.view(-1).long())
self.log("loss", loss)
return loss
----------
Example 3: Callbacks
--------------------
We also have a collection of callbacks.
.. code-block:: python
from pl_bolts.callbacks import PrintTableMetricsCallback
import lightning as L
trainer = L.Trainer(callbacks=[PrintTableMetricsCallback()])
# loss│train_loss│val_loss│epoch
# ──────────────────────────────
# 2.2541470527648926│2.2541470527648926│2.2158432006835938│0

View File

@ -1,36 +0,0 @@
:orphan:
Community Examples
==================
- `Lightning Bolts: Deep Learning components for extending PyTorch Lightning <https://lightning.ai/docs/pytorch/latest/ecosystem/bolts.html>`_.
- `Lightning Flash: Your PyTorch AI Factory - Flash enables you to easily configure and run complex AI recipes <https://github.com/Lightning-AI/lightning-flash>`_.
- `Contextual Emotion Detection (DoubleDistilBert) <https://github.com/juliusberner/emotion_transformer>`_
- `Cotatron: Transcription-Guided Speech Encoder <https://github.com/mindslab-ai/cotatron>`_
- `FasterRCNN object detection + Hydra <https://github.com/Erlemar/wheat>`_
- `Image Inpainting using Partial Convolutions <https://github.com/ryanwongsa/Image-Inpainting>`_
- `MNIST on TPU <https://colab.research.google.com/drive/1-_LKx4HwAxl5M6xPJmqAAu444LTDQoa3#scrollTo=BHBz1_AnamN_>`_
- `NER (transformers, TPU) <https://colab.research.google.com/drive/1dBN-wwYUngLYVt985wGs_OKPlK_ANB9D>`_
- `NeuralTexture (CVPR) <https://github.com/henzler/neuraltexture>`_
- `Recurrent Attentive Neural Process <https://github.com/3springs/attentive-neural-processes>`_
- `Siamese Nets for One-shot Image Recognition <https://github.com/bhiziroglu/Siamese-Neural-Networks>`_
- `Speech Transformers <https://github.com/tongjinle123/speech-transformer-pytorch_lightning>`_
- `Transformers transfer learning (Huggingface) <https://colab.research.google.com/drive/1F_RNcHzTfFuQf-LeKvSlud6x7jXYkG31#scrollTo=yr7eaxkF-djf>`_
- `Transformers text classification <https://github.com/ricardorei/lightning-text-classification>`_
- `VAE Library of over 18+ VAE flavors <https://github.com/AntixK/PyTorch-VAE>`_
- `Transformers Question Answering (SQuAD) <https://github.com/tshrjn/Finetune-QA/>`_
- `Atlas: End-to-End 3D Scene Reconstruction from Posed Images <https://github.com/magicleap/atlas>`_
- `Self-Supervised Representation Learning (MoCo and BYOL) <https://github.com/untitled-ai/self_supervised>`_
- `PyTorch-Forecasting: Time series forecasting package <https://github.com/jdb78/pytorch-forecasting>`_
- `Transformers masked language modeling <https://github.com/yang-zhang/lightning-language-modeling>`_
- `PyTorch Geometric examples with PyTorch Lightning and Hydra <https://github.com/tchaton/lightning-geometric>`_
- `PyTorch Tabular: Deep learning with tabular data <https://github.com/manujosephv/pytorch_tabular>`_
- `Asteroid: An audio source separation toolkit for researchers <https://github.com/asteroid-team/asteroid>`_
PyTorch Ecosystem Examples
==========================
- `PyTorch Geometric: Deep learning on graphs and other irregular structures <https://github.com/rusty1s/pytorch_geometric/tree/master/examples/pytorch_lightning>`_.
- `TorchIO, MONAI and Lightning for 3D medical image segmentation <https://colab.research.google.com/github/fepegar/torchio-notebooks/blob/main/notebooks/TorchIO_MONAI_lightning.pytorch.ipynb>`_.

View File

@ -1,78 +0,0 @@
:orphan:
Lightning Flash
===============
`Lightning Flash <https://lightning-flash.readthedocs.io/en/stable/>`_ is a high-level deep learning framework for fast prototyping, baselining, fine-tuning, and solving deep learning problems.
Flash makes complex AI recipes for over 15 tasks across 7 data domains accessible to all.
It is built for beginners with a simple API that requires very little deep learning background, and for data scientists, Kagglers, applied ML practitioners, and deep learning researchers that
want a quick way to get a deep learning baseline with advanced features PyTorch Lightning offers.
.. code-block:: bash
pip install lightning-flash
-----------------
*********************************
Using Lightning Flash in 3 Steps!
*********************************
1. Load your Data
-----------------
All data loading in Flash is performed via a ``from_*`` classmethod of a ``DataModule``.
Which ``DataModule`` to use and which ``from_*`` methods are available depends on the task you want to perform.
For example, for image segmentation where your data is stored in folders, you would use the ``SemanticSegmentationData``'s `from_folders <https://lightning-flash.readthedocs.io/en/latest/reference/semantic_segmentation.html#from-folders>`_ method:
.. code-block:: python
from flash.image import SemanticSegmentationData
dm = SemanticSegmentationData.from_folders(
train_folder="data/CameraRGB",
train_target_folder="data/CameraSeg",
val_split=0.1,
image_size=(256, 256),
num_classes=21,
)
------------
2. Configure your Model
-----------------------
Our tasks come loaded with pre-trained backbones and (where applicable) heads.
You can view the available backbones to use with your task using `available_backbones <https://lightning-flash.readthedocs.io/en/latest/general/backbones.html>`_.
Once you've chosen, create the model:
.. code-block:: python
from flash.image import SemanticSegmentation
print(SemanticSegmentation.available_heads())
# ['deeplabv3', 'deeplabv3plus', 'fpn', ..., 'unetplusplus']
print(SemanticSegmentation.available_backbones("fpn"))
# ['densenet121', ..., 'xception'] # + 113 models
print(SemanticSegmentation.available_pretrained_weights("efficientnet-b0"))
# ['imagenet', 'advprop']
model = SemanticSegmentation(head="fpn", backbone="efficientnet-b0", pretrained="advprop", num_classes=dm.num_classes)
------------
3. Finetune!
------------
.. code-block:: python
from flash import Trainer
trainer = Trainer(max_epochs=3)
trainer.finetune(model, datamodule=datamodule, strategy="freeze")
trainer.save_checkpoint("semantic_segmentation_model.pt")
To learn more about Lightning Flash, please refer to the `Lightning Flash documentation <https://lightning-flash.readthedocs.io/en/latest/>`_.

View File

@ -1,93 +0,0 @@
:orphan:
TorchMetrics
============
`TorchMetrics <https://torchmetrics.readthedocs.io>`_ is a collection of machine learning metrics for distributed,
scalable PyTorch models and an easy-to-use API to create custom metrics. It has a collection of 60+ PyTorch metrics implementations and
is rigorously tested for all edge cases.
.. code-block:: bash
pip install torchmetrics
In TorchMetrics, we offer the following benefits:
- A standardized interface to increase reproducibility
- Reduced Boilerplate
- Distributed-training compatible
- Rigorously tested
- Automatic accumulation over batches
- Automatic synchronization across multiple devices
-----------------
Example 1: Functional Metrics
-----------------------------
Below is a simple example for calculating the accuracy using the functional interface:
.. code-block:: python
import torch
import torchmetrics
# simulate a classification problem
preds = torch.randn(10, 5).softmax(dim=-1)
target = torch.randint(5, (10,))
acc = torchmetrics.functional.accuracy(preds, target)
------------
Example 2: Module Metrics
-------------------------
The example below shows how to use the class-based interface:
.. code-block:: python
import torch
import torchmetrics
# initialize metric
metric = torchmetrics.Accuracy()
n_batches = 10
for i in range(n_batches):
# simulate a classification problem
preds = torch.randn(10, 5).softmax(dim=-1)
target = torch.randint(5, (10,))
# metric on current batch
acc = metric(preds, target)
print(f"Accuracy on batch {i}: {acc}")
# metric on all batches using custom accumulation
acc = metric.compute()
print(f"Accuracy on all data: {acc}")
# Resetting internal state such that metric ready for new data
metric.reset()
------------
Example 3: TorchMetrics with Lightning
--------------------------------------
The example below shows how to use a metric in your :doc:`LightningModule <../common/lightning_module>`:
.. code-block:: python
class MyModel(LightningModule):
def __init__(self):
...
self.accuracy = torchmetrics.Accuracy()
def training_step(self, batch, batch_idx):
x, y = batch
preds = self(x)
...
# log step metric
self.accuracy(preds, y)
self.log("train_acc_step", self.accuracy, on_epoch=True)
...

View File

@ -1,10 +1,5 @@
# Examples
Our most robust examples showing all sorts of implementations
can be found in our sister library [Lightning Bolts](https://lightning.ai/docs/pytorch/latest/ecosystem/bolts.html).
______________________________________________________________________
*Note that some examples may rely on new features that are only available in the development branch and may be incompatible with any releases.*
*If you see any errors, you might want to consider switching to a version tag you would like to run examples with.*
*For example, if you're using `pytorch-lightning==1.6.4` in your environment and seeing issues, run examples of the tag [1.6.4](https://github.com/Lightning-AI/lightning/tree/1.6.4/pl_examples).*