From 820d5c734876feecbf05c5a73503d7600fcc6e41 Mon Sep 17 00:00:00 2001 From: Hemil Desai Date: Thu, 10 Dec 2020 16:26:18 +0530 Subject: [PATCH] Add a notebook example to reach a quick baseline of ~94% accuracy on CIFAR (#4818) * Add a notebook example to reach a quick baseline of ~94% accuracy on CIFAR10 using Resnet in Lightning * Remove outputs * PR Feedback * some changes * some more changes Co-authored-by: chaton Co-authored-by: rohitgr7 --- notebooks/06-cifar10-baseline.ipynb | 394 ++++++++++++++++++++++++++++ notebooks/README.md | 15 +- 2 files changed, 402 insertions(+), 7 deletions(-) create mode 100644 notebooks/06-cifar10-baseline.ipynb diff --git a/notebooks/06-cifar10-baseline.ipynb b/notebooks/06-cifar10-baseline.ipynb new file mode 100644 index 0000000000..d4b2209cc9 --- /dev/null +++ b/notebooks/06-cifar10-baseline.ipynb @@ -0,0 +1,394 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "accelerator": "GPU", + "colab": { + "name": "06_cifar10_baseline.ipynb", + "provenance": [], + "collapsed_sections": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "qMDj0BYNECU8" + }, + "source": [ + "\"Open" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ECu0zDh8UXU8" + }, + "source": [ + "# PyTorch Lightning CIFAR10 ~94% Baseline Tutorial ⚡\n", + "\n", + "Train a Resnet to 94% accuracy on Cifar10!\n", + "\n", + "Main takeaways:\n", + "1. Experiment with different Learning Rate schedules and frequencies in the configure_optimizers method in pl.LightningModule\n", + "2. Use an existing Resnet architecture with modifications directly with Lightning\n", + "\n", + "---\n", + "\n", + " - Give us a ⭐ [on Github](https://www.github.com/PytorchLightning/pytorch-lightning/)\n", + " - Check out [the documentation](https://pytorch-lightning.readthedocs.io/en/latest/)\n", + " - Join us [on Slack](https://join.slack.com/t/pytorch-lightning/shared_invite/zt-f6bl2l0l-JYMK3tbAgAmGRrlNr00f1A)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "HYpMlx7apuHq" + }, + "source": [ + "### Setup\n", + "Lightning is easy to install. Simply `pip install pytorch-lightning`.\n", + "Also check out [bolts](https://github.com/PyTorchLightning/pytorch-lightning-bolts/) for pre-existing data modules and models." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "ziAQCrE-TYWG" + }, + "source": [ + "! pip install pytorch-lightning pytorch-lightning-bolts -qU" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "L-W_Gq2FORoU" + }, + "source": [ + "# Run this if you intend to use TPUs\n", + "# !curl https://raw.githubusercontent.com/pytorch/xla/master/contrib/scripts/env-setup.py -o pytorch-xla-env-setup.py\n", + "# !python pytorch-xla-env-setup.py --version nightly --apt-packages libomp5 libopenblas-dev" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "wjov-2N_TgeS" + }, + "source": [ + "import torch\n", + "import torch.nn as nn\n", + "import torch.nn.functional as F\n", + "from torch.optim.lr_scheduler import OneCycleLR\n", + "from torch.optim.swa_utils import AveragedModel, update_bn\n", + "import torchvision\n", + "\n", + "import pytorch_lightning as pl\n", + "from pytorch_lightning.callbacks import LearningRateMonitor\n", + "from pytorch_lightning.metrics.functional import accuracy\n", + "from pl_bolts.datamodules import CIFAR10DataModule\n", + "from pl_bolts.transforms.dataset_normalizations import cifar10_normalization" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "54JMU1N-0y0g" + }, + "source": [ + "pl.seed_everything(7);" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "FA90qwFcqIXR" + }, + "source": [ + "### CIFAR10 Data Module\n", + "\n", + "Import the existing data module from `bolts` and modify the train and test transforms." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "S9e-W8CSa8nH" + }, + "source": [ + "batch_size = 32\n", + "\n", + "train_transforms = torchvision.transforms.Compose([\n", + " torchvision.transforms.RandomCrop(32, padding=4),\n", + " torchvision.transforms.RandomHorizontalFlip(),\n", + " torchvision.transforms.ToTensor(),\n", + " cifar10_normalization(),\n", + "])\n", + "\n", + "test_transforms = torchvision.transforms.Compose([\n", + " torchvision.transforms.ToTensor(),\n", + " cifar10_normalization(),\n", + "])\n", + "\n", + "cifar10_dm = CIFAR10DataModule(\n", + " batch_size=batch_size,\n", + " train_transforms=train_transforms,\n", + " test_transforms=test_transforms,\n", + " val_transforms=test_transforms,\n", + ")" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "SfCsutp3qUMc" + }, + "source": [ + "### Resnet\n", + "Modify the pre-existing Resnet architecture from TorchVision. The pre-existing architecture is based on ImageNet images (224x224) as input. So we need to modify it for CIFAR10 images (32x32)." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "GNSeJgwvhHp-" + }, + "source": [ + "def create_model():\n", + " model = torchvision.models.resnet18(pretrained=False, num_classes=10)\n", + " model.conv1 = nn.Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", + " model.maxpool = nn.Identity()\n", + " return model" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "HUCj5TKsqty1" + }, + "source": [ + "### Lightning Module\n", + "Check out the [`configure_optimizers`](https://pytorch-lightning.readthedocs.io/en/stable/lightning_module.html#configure-optimizers) method to use custom Learning Rate schedulers. The OneCycleLR with SGD will get you to around 92-93% accuracy in 20-30 epochs and 93-94% accuracy in 40-50 epochs. Feel free to experiment with different LR schedules from https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "03OMrBa5iGtT" + }, + "source": [ + "class LitResnet(pl.LightningModule):\n", + " def __init__(self, lr=0.05):\n", + " super().__init__()\n", + "\n", + " self.save_hyperparameters()\n", + " self.model = create_model()\n", + "\n", + " def forward(self, x):\n", + " out = self.model(x)\n", + " return F.log_softmax(out, dim=1)\n", + "\n", + " def training_step(self, batch, batch_idx):\n", + " x, y = batch\n", + " logits = F.log_softmax(self.model(x), dim=1)\n", + " loss = F.nll_loss(logits, y)\n", + " self.log('train_loss', loss)\n", + " return loss\n", + "\n", + " def evaluate(self, batch, stage=None):\n", + " x, y = batch\n", + " logits = self(x)\n", + " loss = F.nll_loss(logits, y)\n", + " preds = torch.argmax(logits, dim=1)\n", + " acc = accuracy(preds, y)\n", + "\n", + " if stage:\n", + " self.log(f'{stage}_loss', loss, prog_bar=True)\n", + " self.log(f'{stage}_acc', acc, prog_bar=True)\n", + "\n", + " def validation_step(self, batch, batch_idx):\n", + " self.evaluate(batch, 'val')\n", + "\n", + " def test_step(self, batch, batch_idx):\n", + " self.evaluate(batch, 'test')\n", + "\n", + " def configure_optimizers(self):\n", + " optimizer = torch.optim.SGD(self.parameters(), lr=self.hparams.lr, momentum=0.9, weight_decay=5e-4)\n", + " steps_per_epoch = 45000 // batch_size\n", + " scheduler_dict = {\n", + " 'scheduler': OneCycleLR(optimizer, 0.1, epochs=self.trainer.max_epochs, steps_per_epoch=steps_per_epoch),\n", + " 'interval': 'step',\n", + " }\n", + " return {'optimizer': optimizer, 'lr_scheduler': scheduler_dict}" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "3FFPgpAFi9KU" + }, + "source": [ + "model = LitResnet(lr=0.05)\n", + "model.datamodule = cifar10_dm\n", + "\n", + "trainer = pl.Trainer(\n", + " progress_bar_refresh_rate=20,\n", + " max_epochs=40,\n", + " gpus=1,\n", + " logger=pl.loggers.TensorBoardLogger('lightning_logs/', name='resnet'),\n", + " callbacks=[LearningRateMonitor(logging_interval='step')],\n", + ")\n", + "\n", + "trainer.fit(model, cifar10_dm)\n", + "trainer.test(model, datamodule=cifar10_dm);" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "lWL_WpeVIXWQ" + }, + "source": [ + "### Bonus: Use [Stochastic Weight Averaging](https://arxiv.org/abs/1803.05407) to get a boost on performance\n", + "\n", + "Use SWA from torch.optim to get a quick performance boost. Also shows a couple of cool features from Lightning:\n", + "- Use `training_epoch_end` to run code after the end of every epoch\n", + "- Use a pretrained model directly with this wrapper for SWA" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "bsSwqKv0t9uY" + }, + "source": [ + "class SWAResnet(LitResnet):\n", + " def __init__(self, trained_model, lr=0.01):\n", + " super().__init__()\n", + "\n", + " self.save_hyperparameters('lr')\n", + " self.model = trained_model\n", + " self.swa_model = AveragedModel(self.model)\n", + "\n", + " def forward(self, x):\n", + " out = self.swa_model(x)\n", + " return F.log_softmax(out, dim=1)\n", + "\n", + " def training_epoch_end(self, training_step_outputs):\n", + " self.swa_model.update_parameters(self.model)\n", + "\n", + " def validation_step(self, batch, batch_idx, stage=None):\n", + " x, y = batch\n", + " logits = F.log_softmax(self.model(x), dim=1)\n", + " loss = F.nll_loss(logits, y)\n", + " preds = torch.argmax(logits, dim=1)\n", + " acc = accuracy(preds, y)\n", + "\n", + " self.log(f'val_loss', loss, prog_bar=True)\n", + " self.log(f'val_acc', acc, prog_bar=True)\n", + "\n", + " def configure_optimizers(self):\n", + " optimizer = torch.optim.SGD(self.model.parameters(), lr=self.hparams.lr, momentum=0.9, weight_decay=5e-4)\n", + " return optimizer\n", + "\n", + " def on_train_end(self):\n", + " update_bn(self.datamodule.train_dataloader(), self.swa_model, device=self.device)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "cA6ZG7C74rjL" + }, + "source": [ + "swa_model = SWAResnet(model.model, lr=0.01)\n", + "swa_model.datamodule = cifar10_dm\n", + "\n", + "swa_trainer = pl.Trainer(\n", + " progress_bar_refresh_rate=20,\n", + " max_epochs=20,\n", + " gpus=1,\n", + " logger=pl.loggers.TensorBoardLogger('lightning_logs/', name='swa_resnet'),\n", + ")\n", + "\n", + "swa_trainer.fit(swa_model, cifar10_dm)\n", + "swa_trainer.test(swa_model, datamodule=cifar10_dm);" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "RRHMfGiDpZ2M" + }, + "source": [ + "# Start tensorboard.\n", + "%reload_ext tensorboard\n", + "%tensorboard --logdir lightning_logs/" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "RltpFGS-s0M1" + }, + "source": [ + "\n", + "

Congratulations - Time to Join the Community!

\n", + "
\n", + "\n", + "Congratulations on completing this notebook tutorial! If you enjoyed this and would like to join the Lightning movement, you can do so in the following ways!\n", + "\n", + "### Star [Lightning](https://github.com/PyTorchLightning/pytorch-lightning) on GitHub\n", + "The easiest way to help our community is just by starring the GitHub repos! This helps raise awareness of the cool tools we're building.\n", + "\n", + "* Please, star [Lightning](https://github.com/PyTorchLightning/pytorch-lightning)\n", + "\n", + "### Join our [Slack](https://join.slack.com/t/pytorch-lightning/shared_invite/zt-f6bl2l0l-JYMK3tbAgAmGRrlNr00f1A)!\n", + "The best way to keep up to date on the latest advancements is to join our community! Make sure to introduce yourself and share your interests in `#general` channel\n", + "\n", + "### Interested by SOTA AI models ! Check out [Bolt](https://github.com/PyTorchLightning/pytorch-lightning-bolts)\n", + "Bolts has a collection of state-of-the-art models, all implemented in [Lightning](https://github.com/PyTorchLightning/pytorch-lightning) and can be easily integrated within your own projects.\n", + "\n", + "* Please, star [Bolt](https://github.com/PyTorchLightning/pytorch-lightning-bolts)\n", + "\n", + "### Contributions !\n", + "The best way to contribute to our community is to become a code contributor! At any time you can go to [Lightning](https://github.com/PyTorchLightning/pytorch-lightning) or [Bolt](https://github.com/PyTorchLightning/pytorch-lightning-bolts) GitHub Issues page and filter for \"good first issue\". \n", + "\n", + "* [Lightning good first issue](https://github.com/PyTorchLightning/pytorch-lightning/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22)\n", + "* [Bolt good first issue](https://github.com/PyTorchLightning/pytorch-lightning-bolts/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22)\n", + "* You can also contribute your own notebooks with useful examples !\n", + "\n", + "### Great thanks from the entire Pytorch Lightning Team for your interest !\n", + "\n", + "" + ] + } + ] +} diff --git a/notebooks/README.md b/notebooks/README.md index 695e1a038c..5d0f3564e9 100644 --- a/notebooks/README.md +++ b/notebooks/README.md @@ -4,10 +4,11 @@ You can easily run any of the official notebooks by clicking the 'Open in Colab' links in the table below :smile: -| Notebook | Description | Colab Link | -| :--- | :--- | :---: | -| __MNIST Hello World__ | Train your first Lightning Module on the classic MNIST Handwritten Digits Dataset. | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/PytorchLightning/pytorch-lightning/blob/master/notebooks/01-mnist-hello-world.ipynb) | -| __Datamodules__ | Learn about DataModules and train a dataset-agnostic model on MNIST and CIFAR10.| [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/PytorchLightning/pytorch-lightning/blob/master/notebooks/02-datamodules.ipynb)| -| __GAN__ | Train a GAN on the MNIST Dataset. Learn how to use multiple optimizers in Lightning. | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/PytorchLightning/pytorch-lightning/blob/master/notebooks/03-basic-gan.ipynb) | -| __BERT__ | Fine-tune HuggingFace Transformers models on the GLUE Benchmark | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/PytorchLightning/pytorch-lightning/blob/master/notebooks/04-transformers-text-classification.ipynb) | -| __Trainer Flags__ | Overview of the available Lightning `Trainer` flags | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/PytorchLightning/pytorch-lightning/blob/master/notebooks/05-trainer-flags-overview.ipynb) | +| Notebook | Description | Colab Link | +| :----------------------- | :----------------------------------------------------------------------------------- | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | +| **MNIST Hello World** | Train your first Lightning Module on the classic MNIST Handwritten Digits Dataset. | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/PytorchLightning/pytorch-lightning/blob/master/notebooks/01-mnist-hello-world.ipynb) | +| **Datamodules** | Learn about DataModules and train a dataset-agnostic model on MNIST and CIFAR10. | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/PytorchLightning/pytorch-lightning/blob/master/notebooks/02-datamodules.ipynb) | +| **GAN** | Train a GAN on the MNIST Dataset. Learn how to use multiple optimizers in Lightning. | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/PytorchLightning/pytorch-lightning/blob/master/notebooks/03-basic-gan.ipynb) | +| **BERT** | Fine-tune HuggingFace Transformers models on the GLUE Benchmark | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/PytorchLightning/pytorch-lightning/blob/master/notebooks/04-transformers-text-classification.ipynb) | +| **Trainer Flags** | Overview of the available Lightning `Trainer` flags | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/PytorchLightning/pytorch-lightning/blob/master/notebooks/05-trainer-flags-overview.ipynb) | +| **94% Baseline CIFAR10** | Establish a quick baseline of ~94% accuracy on CIFAR10 using Resnet in Lightning | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/PytorchLightning/pytorch-lightning/blob/master/notebooks/06-cifar10-baseline.ipynb) |