set dp as default backend
This commit is contained in:
parent
63de076765
commit
81d39786d9
|
@ -1,6 +1,7 @@
|
|||
from torch.nn import DataParallel
|
||||
from torch.nn.parallel import DistributedDataParallel
|
||||
import itertools
|
||||
from itertools import chain
|
||||
|
||||
import threading
|
||||
import torch
|
||||
|
@ -42,6 +43,29 @@ class LightningDataParallel(DataParallel):
|
|||
Override the forward call in lightning so it goes to training and validation step respectively
|
||||
"""
|
||||
|
||||
def forward(self, *inputs, **kwargs):
|
||||
if not self.device_ids:
|
||||
return self.module(*inputs, **kwargs)
|
||||
|
||||
for t in chain(self.module.parameters(), self.module.buffers()):
|
||||
if t.device != self.src_device_obj:
|
||||
raise RuntimeError("module must have its parameters and buffers "
|
||||
"on device {} (device_ids[0]) but found one of "
|
||||
"them on device: {}".format(self.src_device_obj, t.device))
|
||||
|
||||
inputs, kwargs = self.scatter(inputs, kwargs, self.device_ids)
|
||||
if len(self.device_ids) == 1:
|
||||
# lightning
|
||||
if self.module.training:
|
||||
return self.module.training_step(*inputs[0], **kwargs[0])
|
||||
else:
|
||||
return self.module.validation_step(*inputs[0], **kwargs[0])
|
||||
|
||||
replicas = self.replicate(self.module, self.device_ids[:len(inputs)])
|
||||
outputs = self.parallel_apply(replicas, inputs, kwargs)
|
||||
return self.gather(outputs, self.output_device)
|
||||
|
||||
|
||||
def parallel_apply(self, replicas, inputs, kwargs):
|
||||
print('LDP')
|
||||
return parallel_apply(replicas, inputs, kwargs, self.device_ids[:len(replicas)])
|
||||
|
|
Loading…
Reference in New Issue