Update DDP docs (#5046)
* Fix flake8 error to fix CI * Correct weights-loading to use correct callbacks * Fix dangling links Co-authored-by: chaton <thomas@grid.ai> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com>
This commit is contained in:
parent
2c3d43dcb5
commit
7e8673debd
|
@ -593,9 +593,9 @@ Below are the possible configurations we support.
|
|||
|
||||
Implement Your Own Distributed (DDP) training
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
If you need your own way to init PyTorch DDP you can override :meth:`pytorch_lightning.core.LightningModule.`.
|
||||
If you need your own way to init PyTorch DDP you can override :meth:`pytorch_lightning.plugins.ddp_plugin.DDPPlugin.init_ddp_connection`.
|
||||
|
||||
If you also need to use your own DDP implementation, override: :meth:`pytorch_lightning.core.LightningModule.configure_ddp`.
|
||||
If you also need to use your own DDP implementation, override: :meth:`pytorch_lightning.plugins.ddp_plugin.DDPPlugin.configure_ddp`.
|
||||
|
||||
|
||||
----------
|
||||
|
|
|
@ -46,7 +46,7 @@ You can customize the checkpointing behavior to monitor any quantity of your tra
|
|||
1. Calculate any metric or other quantity you wish to monitor, such as validation loss.
|
||||
2. Log the quantity using :func:`~~pytorch_lightning.core.lightning.LightningModule.log` method, with a key such as `val_loss`.
|
||||
3. Initializing the :class:`~pytorch_lightning.callbacks.ModelCheckpoint` callback, and set `monitor` to be the key of your quantity.
|
||||
4. Pass the callback to `checkpoint_callback` :class:`~pytorch_lightning.trainer.Trainer` flag.
|
||||
4. Pass the callback to the `callbacks` :class:`~pytorch_lightning.trainer.Trainer` flag.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
|
|
Loading…
Reference in New Issue