[bugfix] Check LightningOptimizer doesn't delete optimizer hooks (#6305)

* update

* resolve bug
This commit is contained in:
thomas chaton 2021-03-04 20:11:59 +00:00 committed by GitHub
parent 39231aee1a
commit 7acbd65bcb
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 78 additions and 1 deletions

View File

@ -38,7 +38,7 @@ class LightningOptimizer:
def __init__(self, optimizer: Optimizer):
self.__dict__ = {k: v for k, v in optimizer.__dict__.items() if k != 'step'}
self.__dict__ = {k: v for k, v in optimizer.__dict__.items() if k not in ('step', "__del__")}
# For Horovod
if hasattr(optimizer, "skip_synchronize"):

View File

@ -11,6 +11,8 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
from typing import Any
from unittest.mock import DEFAULT, patch
import torch
@ -303,3 +305,78 @@ def test_lightning_optimizer_automatic_optimization_lbfgs_zero_grad(tmpdir):
lbfgs = model.optimizers()
max_iter = lbfgs.param_groups[0]["max_iter"]
assert zero_grad.call_count == max_iter
class OptimizerWithHooks(Optimizer):
def __init__(self, model):
self._fwd_handles = []
self._bwd_handles = []
self.params = []
for _, mod in model.named_modules():
mod_class = mod.__class__.__name__
if mod_class != 'Linear':
continue
handle = mod.register_forward_pre_hook(self._save_input) # save the inputs
self._fwd_handles.append(handle) # collect forward-save-input hooks in list
handle = mod.register_backward_hook(self._save_grad_output) # save the gradients
self._bwd_handles.append(handle) # collect backward-save-grad hook in list
# save the parameters
params = [mod.weight]
if mod.bias is not None:
params.append(mod.bias)
# save a param_group for each module
d = {'params': params, 'mod': mod, 'layer_type': mod_class}
self.params.append(d)
super(OptimizerWithHooks, self).__init__(self.params, {"lr": 0.01})
def _save_input(self, mod, i):
"""Saves input of layer"""
if mod.training:
self.state[mod]['x'] = i[0]
def _save_grad_output(self, mod, _, grad_output):
"""
Saves grad on output of layer to
grad is scaled with batch_size since gradient is spread over samples in mini batch
"""
batch_size = grad_output[0].shape[0]
if mod.training:
self.state[mod]['grad'] = grad_output[0] * batch_size
def step(self, closure=None):
closure()
for group in self.param_groups:
_ = self.state[group['mod']]['x']
_ = self.state[group['mod']]['grad']
return True
def test_lightning_optimizer_keeps_hooks(tmpdir):
class TestModel(BoringModel):
count_on_train_batch_start = 0
count_on_train_batch_end = 0
def configure_optimizers(self):
return OptimizerWithHooks(self)
def on_train_batch_start(self, batch: Any, batch_idx: int, dataloader_idx: int) -> None:
self.count_on_train_batch_start += 1
optimizer = self.optimizers(use_pl_optimizer=False)
assert len(optimizer._fwd_handles) == 1
def on_train_batch_end(self, outputs: Any, batch: Any, batch_idx: int, dataloader_idx: int) -> None:
self.count_on_train_batch_end += 1
del self.trainer._lightning_optimizers
gc.collect() # not necessary, just in case
trainer = Trainer(default_root_dir=tmpdir, limit_train_batches=4, limit_val_batches=1, max_epochs=1)
model = TestModel()
trainer.fit(model)
assert model.count_on_train_batch_start == 4
assert model.count_on_train_batch_end == 4