diff --git a/docs/Trainer/Training Loop.md b/docs/Trainer/Training Loop.md index be7eefd283..471e60558c 100644 --- a/docs/Trainer/Training Loop.md +++ b/docs/Trainer/Training Loop.md @@ -17,7 +17,7 @@ Lightning automatically logs gpu usage to the test tube logs. It'll only do it a #### Check which gradients are nan This option prints a list of tensors with nan gradients. ``` {.python} -trainer = Trainer(check_grad_nans=False) +trainer = Trainer(print_nan_grads=False) ``` --- @@ -31,4 +31,15 @@ trainer = Trainer(check_val_every_n_epoch=1) #### Display metrics in progress bar ``` {.python} trainer = Trainer(progress_bar=True) -``` \ No newline at end of file +``` + +--- +#### Display the parameter count by layer +By default lightning prints a list of parameters *and submodules* when it starts training. + +--- +#### Force training for min or max epochs +It can be useful to force training for a minimum number of epochs or limit to a max number +``` {.python} +trainer = Trainer(min_nb_epochs=1, max_nb_epochs=1000) +``` diff --git a/pytorch_lightning/models/trainer.py b/pytorch_lightning/models/trainer.py index b2f9bdc13d..9cdb7d782b 100644 --- a/pytorch_lightning/models/trainer.py +++ b/pytorch_lightning/models/trainer.py @@ -43,12 +43,12 @@ class Trainer(TrainerIO): check_val_every_n_epoch=1, fast_dev_run=False, accumulate_grad_batches=1, - enable_early_stop=True, max_nb_epochs=5, min_nb_epochs=1, + enable_early_stop=True, max_nb_epochs=1000, min_nb_epochs=1, train_percent_check=1.0, val_percent_check=1.0, test_percent_check=1.0, val_check_interval=0.95, log_save_interval=1, add_log_row_interval=1, lr_scheduler_milestones=None, use_amp=False, - check_grad_nans=False, + print_nan_grads=False, amp_level='O2', nb_sanity_val_steps=5): @@ -76,7 +76,7 @@ class Trainer(TrainerIO): self.lr_scheduler_milestones = [] if lr_scheduler_milestones is None else [int(x.strip()) for x in lr_scheduler_milestones.split(',')] self.lr_schedulers = [] self.amp_level = amp_level - self.check_grad_nans = check_grad_nans + self.print_nan_grads = print_nan_grads self.data_parallel_device_ids = gpus self.data_parallel = gpus is not None and len(gpus) > 0 @@ -427,7 +427,7 @@ class Trainer(TrainerIO): else: loss.backward() - if self.check_grad_nans: + if self.print_nan_grads: model = self.model.module if self.data_parallel else self.model for param in model.parameters(): print(param.grad.float().sum())