Merge branch 'master' into refactor/app-root
This commit is contained in:
commit
7a194ca407
|
@ -53,6 +53,7 @@ from lightning.fabric.utilities.imports import (
|
|||
_TORCH_GREATER_EQUAL_2_0,
|
||||
)
|
||||
from lightning.fabric.utilities.init import _EmptyInit
|
||||
from lightning.fabric.utilities.load import _lazy_load, _materialize_tensors
|
||||
from lightning.fabric.utilities.optimizer import _optimizers_to_device
|
||||
from lightning.fabric.utilities.seed import reset_seed
|
||||
from lightning.fabric.utilities.types import _PATH, ProcessGroup, ReduceOp
|
||||
|
@ -572,9 +573,13 @@ class FSDPStrategy(ParallelStrategy):
|
|||
return metadata
|
||||
|
||||
if _is_full_checkpoint(path):
|
||||
# TODO: Support lazy-loading here (see Fabric)
|
||||
checkpoint = torch.load(path, map_location="cpu")
|
||||
_load_raw_module_state(checkpoint["state_dict"], world_size=self.world_size, module=self.model)
|
||||
checkpoint = _lazy_load(path) if _TORCH_GREATER_EQUAL_2_0 else torch.load(path, map_location="cpu")
|
||||
_load_raw_module_state(checkpoint.pop("state_dict"), module=self.model, world_size=self.world_size)
|
||||
|
||||
if _TORCH_GREATER_EQUAL_2_0:
|
||||
# Materialize lazy tensors if there are any left in the checkpoint
|
||||
# The `torch.Optimizer.load_state_dict` method can't load lazy tensors because of deepcopy pickle issues
|
||||
checkpoint = _materialize_tensors(checkpoint)
|
||||
|
||||
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
|
||||
from torch.distributed.fsdp import OptimStateKeyType
|
||||
|
|
|
@ -12,117 +12,21 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import os
|
||||
from datetime import timedelta
|
||||
from unittest import mock
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
from torch.nn.parallel.distributed import DistributedDataParallel
|
||||
from torch.nn.parallel import DistributedDataParallel
|
||||
|
||||
import lightning.pytorch as pl
|
||||
from lightning.fabric.plugins.environments import LightningEnvironment
|
||||
from lightning.fabric.utilities.imports import _TORCH_GREATER_EQUAL_2_0
|
||||
from lightning.pytorch import seed_everything, Trainer
|
||||
from lightning.pytorch.callbacks import Callback
|
||||
from lightning.pytorch import LightningModule, Trainer
|
||||
from lightning.pytorch.demos.boring_classes import BoringModel
|
||||
from lightning.pytorch.plugins import DoublePrecisionPlugin, HalfPrecisionPlugin, PrecisionPlugin
|
||||
from lightning.pytorch.strategies import DDPStrategy
|
||||
from tests_pytorch.helpers.datamodules import ClassifDataModule
|
||||
from lightning.pytorch.trainer.states import TrainerFn
|
||||
from tests_pytorch.helpers.runif import RunIf
|
||||
from tests_pytorch.helpers.simple_models import ClassificationModel
|
||||
|
||||
|
||||
@RunIf(min_cuda_gpus=2, standalone=True, sklearn=True)
|
||||
def test_multi_gpu_model_ddp_fit_only(tmpdir):
|
||||
dm = ClassifDataModule()
|
||||
model = ClassificationModel()
|
||||
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, accelerator="gpu", devices=2, strategy="ddp")
|
||||
trainer.fit(model, datamodule=dm)
|
||||
|
||||
|
||||
@RunIf(min_cuda_gpus=2, standalone=True, sklearn=True)
|
||||
def test_multi_gpu_model_ddp_test_only(tmpdir):
|
||||
dm = ClassifDataModule()
|
||||
model = ClassificationModel()
|
||||
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, accelerator="gpu", devices=2, strategy="ddp")
|
||||
trainer.test(model, datamodule=dm)
|
||||
|
||||
|
||||
@RunIf(min_cuda_gpus=2, standalone=True, sklearn=True)
|
||||
def test_multi_gpu_model_ddp_fit_test(tmpdir):
|
||||
seed_everything(4321)
|
||||
dm = ClassifDataModule()
|
||||
model = ClassificationModel()
|
||||
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, accelerator="gpu", devices=2, strategy="ddp")
|
||||
trainer.fit(model, datamodule=dm)
|
||||
result = trainer.test(model, datamodule=dm)
|
||||
|
||||
for out in result:
|
||||
assert out["test_acc"] > 0.7
|
||||
|
||||
|
||||
@RunIf(skip_windows=True)
|
||||
@mock.patch("torch.cuda.set_device")
|
||||
@mock.patch("lightning.pytorch.accelerators.cuda._check_cuda_matmul_precision")
|
||||
@mock.patch("lightning.pytorch.accelerators.cuda._clear_cuda_memory")
|
||||
def test_ddp_torch_dist_is_available_in_setup(_, __, ___, cuda_count_1, mps_count_0, tmpdir):
|
||||
"""Test to ensure torch distributed is available within the setup hook using ddp."""
|
||||
|
||||
class TestModel(BoringModel):
|
||||
def setup(self, stage: str) -> None:
|
||||
assert torch.distributed.is_initialized()
|
||||
raise SystemExit()
|
||||
|
||||
model = TestModel()
|
||||
trainer = Trainer(
|
||||
default_root_dir=tmpdir,
|
||||
fast_dev_run=True,
|
||||
strategy=DDPStrategy(process_group_backend="gloo"),
|
||||
accelerator="gpu",
|
||||
devices=1,
|
||||
)
|
||||
with pytest.raises(SystemExit):
|
||||
trainer.fit(model)
|
||||
|
||||
|
||||
@RunIf(min_cuda_gpus=2, standalone=True)
|
||||
@pytest.mark.parametrize("precision", ["16-mixed", "32-true"])
|
||||
def test_ddp_wrapper(tmpdir, precision):
|
||||
"""Test parameters to ignore are carried over for DDP."""
|
||||
|
||||
class WeirdModule(torch.nn.Module):
|
||||
def _save_to_state_dict(self, destination, prefix, keep_vars):
|
||||
return {"something": "something"}
|
||||
|
||||
class CustomModel(BoringModel):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.weird_module = WeirdModule()
|
||||
|
||||
# should be skip.
|
||||
self._ddp_params_and_buffers_to_ignore = ["something"]
|
||||
|
||||
class CustomCallback(Callback):
|
||||
def on_train_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
|
||||
assert isinstance(trainer.strategy.model, DistributedDataParallel)
|
||||
expected = ["something"]
|
||||
assert (
|
||||
trainer.strategy.model.parameters_to_ignore == set(expected) if _TORCH_GREATER_EQUAL_2_0 else expected
|
||||
)
|
||||
assert trainer.strategy.model.module._ddp_params_and_buffers_to_ignore == expected
|
||||
|
||||
model = CustomModel()
|
||||
trainer = Trainer(
|
||||
default_root_dir=tmpdir,
|
||||
fast_dev_run=True,
|
||||
precision=precision,
|
||||
strategy="ddp",
|
||||
accelerator="gpu",
|
||||
devices=2,
|
||||
callbacks=CustomCallback(),
|
||||
enable_progress_bar=False,
|
||||
enable_model_summary=False,
|
||||
)
|
||||
trainer.fit(model)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
|
@ -153,6 +57,27 @@ def test_ddp_process_group_backend(process_group_backend, device_str, expected_p
|
|||
@pytest.mark.parametrize(
|
||||
("strategy_name", "expected_ddp_kwargs"),
|
||||
[
|
||||
("ddp_spawn", {}),
|
||||
pytest.param("ddp_fork", {}, marks=RunIf(skip_windows=True)),
|
||||
pytest.param("ddp_notebook", {}, marks=RunIf(skip_windows=True)),
|
||||
("ddp_spawn_find_unused_parameters_false", {"find_unused_parameters": False}),
|
||||
("ddp_spawn_find_unused_parameters_true", {"find_unused_parameters": True}),
|
||||
pytest.param(
|
||||
"ddp_fork_find_unused_parameters_false", {"find_unused_parameters": False}, marks=RunIf(skip_windows=True)
|
||||
),
|
||||
pytest.param(
|
||||
"ddp_fork_find_unused_parameters_true", {"find_unused_parameters": True}, marks=RunIf(skip_windows=True)
|
||||
),
|
||||
pytest.param(
|
||||
"ddp_notebook_find_unused_parameters_false",
|
||||
{"find_unused_parameters": False},
|
||||
marks=RunIf(skip_windows=True),
|
||||
),
|
||||
pytest.param(
|
||||
"ddp_notebook_find_unused_parameters_true",
|
||||
{"find_unused_parameters": True},
|
||||
marks=RunIf(skip_windows=True),
|
||||
),
|
||||
("ddp", {}),
|
||||
("ddp_find_unused_parameters_false", {"find_unused_parameters": False}),
|
||||
("ddp_find_unused_parameters_true", {"find_unused_parameters": True}),
|
||||
|
@ -187,3 +112,78 @@ def test_tensor_init_context(precision_plugin, expected_dtype):
|
|||
module = torch.nn.Linear(2, 2)
|
||||
assert module.weight.device == module.bias.device == expected_device
|
||||
assert module.weight.dtype == module.bias.dtype == expected_dtype
|
||||
|
||||
|
||||
@mock.patch("torch.distributed.init_process_group")
|
||||
def test_set_timeout(mock_init_process_group):
|
||||
"""Test that the timeout gets passed to the ``torch.distributed.init_process_group`` function."""
|
||||
test_timedelta = timedelta(seconds=30)
|
||||
model = BoringModel()
|
||||
ddp_strategy = DDPStrategy(timeout=test_timedelta)
|
||||
trainer = Trainer(
|
||||
max_epochs=1,
|
||||
accelerator="cpu",
|
||||
strategy=ddp_strategy,
|
||||
)
|
||||
# test wrap the model if fitting
|
||||
trainer.strategy.connect(model)
|
||||
trainer.lightning_module.trainer = trainer
|
||||
trainer.strategy.setup_environment()
|
||||
|
||||
process_group_backend = trainer.strategy._get_process_group_backend()
|
||||
global_rank = trainer.strategy.cluster_environment.global_rank()
|
||||
world_size = trainer.strategy.cluster_environment.world_size()
|
||||
mock_init_process_group.assert_called_with(
|
||||
process_group_backend, rank=global_rank, world_size=world_size, timeout=test_timedelta
|
||||
)
|
||||
|
||||
|
||||
@RunIf(skip_windows=True)
|
||||
def test_ddp_configure_ddp(mps_count_0):
|
||||
"""Tests with ddp strategy."""
|
||||
model = BoringModel()
|
||||
ddp_strategy = DDPStrategy()
|
||||
trainer = Trainer(
|
||||
max_epochs=1,
|
||||
strategy=ddp_strategy,
|
||||
)
|
||||
# test wrap the model if fitting
|
||||
trainer.state.fn = TrainerFn.FITTING
|
||||
trainer.strategy.connect(model)
|
||||
trainer.lightning_module.trainer = trainer
|
||||
trainer.strategy.setup_environment()
|
||||
assert isinstance(trainer.model, LightningModule)
|
||||
trainer.strategy.setup(trainer)
|
||||
# in DDPStrategy configure_ddp(), model wrapped by DistributedDataParallel
|
||||
assert isinstance(trainer.model, DistributedDataParallel)
|
||||
|
||||
ddp_strategy = DDPStrategy()
|
||||
trainer = Trainer(
|
||||
max_epochs=1,
|
||||
strategy=ddp_strategy,
|
||||
)
|
||||
# test do not wrap the model if TrainerFn is not fitting
|
||||
trainer.state.fn = TrainerFn.VALIDATING
|
||||
trainer.strategy.connect(model)
|
||||
trainer.lightning_module.trainer = trainer
|
||||
trainer.strategy.setup_environment()
|
||||
trainer.strategy.setup(trainer)
|
||||
# in DDPStrategy configure_ddp(), model are still LightningModule
|
||||
assert isinstance(trainer.model, LightningModule)
|
||||
|
||||
|
||||
@RunIf(min_cuda_gpus=1)
|
||||
@pytest.mark.parametrize("trainer_fn", [TrainerFn.VALIDATING, TrainerFn.TESTING, TrainerFn.PREDICTING])
|
||||
def test_ddp_dont_configure_sync_batchnorm(trainer_fn):
|
||||
model = BoringModel()
|
||||
model.layer = torch.nn.BatchNorm1d(10)
|
||||
ddp_strategy = DDPStrategy()
|
||||
trainer = Trainer(accelerator="gpu", devices=1, strategy=ddp_strategy, sync_batchnorm=True)
|
||||
trainer.state.fn = trainer_fn
|
||||
trainer.strategy.connect(model)
|
||||
trainer.lightning_module.trainer = trainer
|
||||
trainer.strategy.setup_environment()
|
||||
assert isinstance(trainer.model, LightningModule)
|
||||
trainer.strategy.setup(trainer)
|
||||
# because TrainerFn is not FITTING, model is not configured with sync batchnorm
|
||||
assert not isinstance(trainer.strategy.model.layer, torch.nn.modules.batchnorm.SyncBatchNorm)
|
||||
|
|
|
@ -0,0 +1,446 @@
|
|||
# Copyright The Lightning AI team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import os
|
||||
from unittest import mock
|
||||
from unittest.mock import Mock
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
from torch.distributed.optim import ZeroRedundancyOptimizer
|
||||
from torch.multiprocessing import ProcessRaisedException
|
||||
from torch.nn.parallel.distributed import DistributedDataParallel
|
||||
|
||||
import lightning.pytorch as pl
|
||||
import tests_pytorch.helpers.pipelines as tpipes
|
||||
from lightning.fabric.plugins.environments import ClusterEnvironment, LightningEnvironment
|
||||
from lightning.fabric.utilities.imports import _TORCH_GREATER_EQUAL_2_0
|
||||
from lightning.pytorch import Trainer
|
||||
from lightning.pytorch.callbacks import Callback, EarlyStopping
|
||||
from lightning.pytorch.demos.boring_classes import BoringDataModule, BoringModel
|
||||
from lightning.pytorch.strategies import DDPStrategy
|
||||
from lightning.pytorch.strategies.launchers import _SubprocessScriptLauncher
|
||||
from lightning.pytorch.strategies.launchers.multiprocessing import _MultiProcessingLauncher
|
||||
from lightning.pytorch.trainer import seed_everything
|
||||
from tests_pytorch.helpers.datamodules import ClassifDataModule
|
||||
from tests_pytorch.helpers.runif import RunIf
|
||||
from tests_pytorch.helpers.simple_models import ClassificationModel
|
||||
|
||||
|
||||
@RunIf(min_cuda_gpus=2, standalone=True, sklearn=True)
|
||||
def test_multi_gpu_model_ddp_fit_only(tmpdir):
|
||||
dm = ClassifDataModule()
|
||||
model = ClassificationModel()
|
||||
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, accelerator="gpu", devices=2, strategy="ddp")
|
||||
trainer.fit(model, datamodule=dm)
|
||||
|
||||
|
||||
@RunIf(min_cuda_gpus=2, standalone=True, sklearn=True)
|
||||
def test_multi_gpu_model_ddp_test_only(tmpdir):
|
||||
dm = ClassifDataModule()
|
||||
model = ClassificationModel()
|
||||
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, accelerator="gpu", devices=2, strategy="ddp")
|
||||
trainer.test(model, datamodule=dm)
|
||||
|
||||
|
||||
@RunIf(min_cuda_gpus=2, standalone=True, sklearn=True)
|
||||
def test_multi_gpu_model_ddp_fit_test(tmpdir):
|
||||
seed_everything(4321)
|
||||
dm = ClassifDataModule()
|
||||
model = ClassificationModel()
|
||||
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, accelerator="gpu", devices=2, strategy="ddp")
|
||||
trainer.fit(model, datamodule=dm)
|
||||
result = trainer.test(model, datamodule=dm)
|
||||
|
||||
for out in result:
|
||||
assert out["test_acc"] > 0.7
|
||||
|
||||
|
||||
@RunIf(skip_windows=True)
|
||||
@mock.patch("torch.cuda.set_device")
|
||||
@mock.patch("lightning.pytorch.accelerators.cuda._check_cuda_matmul_precision")
|
||||
@mock.patch("lightning.pytorch.accelerators.cuda._clear_cuda_memory")
|
||||
def test_ddp_torch_dist_is_available_in_setup(_, __, ___, cuda_count_1, mps_count_0, tmpdir):
|
||||
"""Test to ensure torch distributed is available within the setup hook using ddp."""
|
||||
|
||||
class TestModel(BoringModel):
|
||||
def setup(self, stage: str) -> None:
|
||||
assert torch.distributed.is_initialized()
|
||||
raise SystemExit()
|
||||
|
||||
model = TestModel()
|
||||
trainer = Trainer(
|
||||
default_root_dir=tmpdir,
|
||||
fast_dev_run=True,
|
||||
strategy=DDPStrategy(process_group_backend="gloo"),
|
||||
accelerator="gpu",
|
||||
devices=1,
|
||||
)
|
||||
with pytest.raises(SystemExit):
|
||||
trainer.fit(model)
|
||||
|
||||
|
||||
@RunIf(min_cuda_gpus=2, standalone=True)
|
||||
@pytest.mark.parametrize("precision", ["16-mixed", "32-true"])
|
||||
def test_ddp_wrapper(tmpdir, precision):
|
||||
"""Test parameters to ignore are carried over for DDP."""
|
||||
|
||||
class WeirdModule(torch.nn.Module):
|
||||
def _save_to_state_dict(self, destination, prefix, keep_vars):
|
||||
return {"something": "something"}
|
||||
|
||||
class CustomModel(BoringModel):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.weird_module = WeirdModule()
|
||||
|
||||
# should be skipped
|
||||
self._ddp_params_and_buffers_to_ignore = ["something"]
|
||||
|
||||
class CustomCallback(Callback):
|
||||
def on_train_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
|
||||
assert isinstance(trainer.strategy.model, DistributedDataParallel)
|
||||
expected = ["something"]
|
||||
assert (
|
||||
trainer.strategy.model.parameters_to_ignore == set(expected) if _TORCH_GREATER_EQUAL_2_0 else expected
|
||||
)
|
||||
assert trainer.strategy.model.module._ddp_params_and_buffers_to_ignore == expected
|
||||
|
||||
model = CustomModel()
|
||||
trainer = Trainer(
|
||||
default_root_dir=tmpdir,
|
||||
fast_dev_run=True,
|
||||
precision=precision,
|
||||
strategy="ddp",
|
||||
accelerator="gpu",
|
||||
devices=2,
|
||||
callbacks=CustomCallback(),
|
||||
enable_progress_bar=False,
|
||||
enable_model_summary=False,
|
||||
)
|
||||
trainer.fit(model)
|
||||
|
||||
|
||||
@RunIf(min_cuda_gpus=2, sklearn=True)
|
||||
def test_multi_gpu_early_stop_ddp_spawn(tmpdir):
|
||||
seed_everything(42)
|
||||
|
||||
trainer_options = {
|
||||
"default_root_dir": tmpdir,
|
||||
"callbacks": [EarlyStopping(monitor="train_acc")],
|
||||
"max_epochs": 50,
|
||||
"limit_train_batches": 10,
|
||||
"limit_val_batches": 10,
|
||||
"accelerator": "gpu",
|
||||
"devices": [0, 1],
|
||||
"strategy": "ddp_spawn",
|
||||
}
|
||||
|
||||
dm = ClassifDataModule()
|
||||
model = ClassificationModel()
|
||||
tpipes.run_model_test(trainer_options, model, dm)
|
||||
|
||||
|
||||
@RunIf(min_cuda_gpus=2)
|
||||
def test_multi_gpu_model_ddp_spawn(tmpdir):
|
||||
seed_everything(42)
|
||||
|
||||
trainer_options = {
|
||||
"default_root_dir": tmpdir,
|
||||
"max_epochs": 1,
|
||||
"limit_train_batches": 10,
|
||||
"limit_val_batches": 10,
|
||||
"accelerator": "gpu",
|
||||
"devices": [0, 1],
|
||||
"strategy": "ddp_spawn",
|
||||
"enable_progress_bar": False,
|
||||
}
|
||||
|
||||
model = BoringModel()
|
||||
|
||||
tpipes.run_model_test(trainer_options, model)
|
||||
|
||||
|
||||
@RunIf(min_cuda_gpus=2)
|
||||
def test_ddp_all_dataloaders_passed_to_fit(tmpdir):
|
||||
"""Make sure DDP works with dataloaders passed to fit()"""
|
||||
model = BoringModel()
|
||||
|
||||
trainer = Trainer(
|
||||
default_root_dir=tmpdir,
|
||||
enable_progress_bar=False,
|
||||
max_epochs=1,
|
||||
limit_train_batches=0.2,
|
||||
limit_val_batches=0.2,
|
||||
accelerator="gpu",
|
||||
devices=[0, 1],
|
||||
strategy="ddp_spawn",
|
||||
)
|
||||
trainer.fit(model, train_dataloaders=model.train_dataloader(), val_dataloaders=model.val_dataloader())
|
||||
assert trainer.state.finished, "DDP doesn't work with dataloaders passed to fit()."
|
||||
|
||||
|
||||
class UnusedParametersModel(BoringModel):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.intermediate_layer = torch.nn.Linear(32, 32)
|
||||
|
||||
def training_step(self, batch, batch_idx):
|
||||
with torch.no_grad():
|
||||
batch = self.intermediate_layer(batch)
|
||||
return super().training_step(batch, batch_idx)
|
||||
|
||||
|
||||
def test_find_unused_parameters_exception():
|
||||
"""Test that the DDP strategy can change PyTorch's error message so that it's more useful for Lightning users."""
|
||||
trainer = Trainer(accelerator="cpu", devices=1, strategy="ddp_spawn", max_steps=2)
|
||||
with pytest.raises(
|
||||
ProcessRaisedException, match="It looks like your LightningModule has parameters that were not used in"
|
||||
):
|
||||
trainer.fit(UnusedParametersModel())
|
||||
|
||||
trainer = Trainer(accelerator="cpu", devices=1, strategy="ddp", max_steps=2)
|
||||
with pytest.raises(RuntimeError, match="It looks like your LightningModule has parameters that were not used in"):
|
||||
trainer.fit(UnusedParametersModel())
|
||||
|
||||
|
||||
class BoringCallbackDDPSpawnModel(BoringModel):
|
||||
def __init__(self, name: str, val: float):
|
||||
super().__init__()
|
||||
self.name = name
|
||||
self.val = val
|
||||
|
||||
def validation_step(self, batch, batch_idx):
|
||||
self.log(self.name, self.val)
|
||||
return super().validation_step(batch, batch_idx)
|
||||
|
||||
|
||||
class CustomMultiProcessingLauncher(_MultiProcessingLauncher):
|
||||
def get_extra_results(self, trainer):
|
||||
extra = super().get_extra_results(trainer)
|
||||
extra["test_val"] = "test_val"
|
||||
return extra
|
||||
|
||||
def update_main_process_results(self, trainer, extra) -> None:
|
||||
trainer.strategy.test_val = extra.pop("test_val")
|
||||
return super().update_main_process_results(trainer, extra)
|
||||
|
||||
|
||||
class TestDDPSpawnStrategy(DDPStrategy):
|
||||
def _configure_launcher(self):
|
||||
self._launcher = CustomMultiProcessingLauncher(self)
|
||||
|
||||
|
||||
@RunIf(skip_windows=True)
|
||||
def test_ddp_spawn_add_get_queue(tmpdir):
|
||||
"""Tests get_extra_results/update_main_process_results with DDPSpawnStrategy."""
|
||||
ddp_spawn_strategy = TestDDPSpawnStrategy()
|
||||
trainer = Trainer(
|
||||
default_root_dir=tmpdir, fast_dev_run=True, accelerator="cpu", devices=2, strategy=ddp_spawn_strategy
|
||||
)
|
||||
|
||||
val: float = 1.0
|
||||
val_name: str = "val_acc"
|
||||
model = BoringCallbackDDPSpawnModel(val_name, val)
|
||||
dm = BoringDataModule()
|
||||
trainer.fit(model, datamodule=dm)
|
||||
assert trainer.callback_metrics[val_name] == torch.tensor(val)
|
||||
assert ddp_spawn_strategy.test_val == "test_val"
|
||||
|
||||
|
||||
class BoringModelDDPCPU(BoringModel):
|
||||
def on_train_start(self) -> None:
|
||||
# make sure that the model is on CPU when training
|
||||
assert self.device == torch.device("cpu")
|
||||
|
||||
|
||||
@RunIf(skip_windows=True)
|
||||
def test_ddp_cpu():
|
||||
"""Tests if device is set correctly when training for DDPStrategy."""
|
||||
trainer = Trainer(devices=2, strategy="ddp_spawn", accelerator="cpu", fast_dev_run=True)
|
||||
# assert strategy attributes for device setting
|
||||
assert isinstance(trainer.strategy, DDPStrategy)
|
||||
assert trainer.strategy.root_device == torch.device("cpu")
|
||||
model = BoringModelDDPCPU()
|
||||
trainer.fit(model)
|
||||
|
||||
|
||||
class BoringZeroRedundancyOptimizerModel(BoringModel):
|
||||
def configure_optimizers(self):
|
||||
return ZeroRedundancyOptimizer(self.layer.parameters(), optimizer_class=torch.optim.Adam, lr=0.1)
|
||||
|
||||
|
||||
@RunIf(min_cuda_gpus=2, skip_windows=True)
|
||||
@pytest.mark.parametrize("strategy", [pytest.param("ddp", marks=RunIf(standalone=True)), "ddp_spawn"])
|
||||
def test_ddp_strategy_checkpoint_zero_redundancy_optimizer(tmpdir, strategy):
|
||||
"""Test to ensure that checkpoint is saved correctly when using zero redundancy optimizer."""
|
||||
model = BoringZeroRedundancyOptimizerModel()
|
||||
trainer = Trainer(accelerator="gpu", devices=2, strategy=strategy, max_steps=1)
|
||||
|
||||
trainer.fit(model)
|
||||
|
||||
checkpoint_path = os.path.join(tmpdir, "model.pt")
|
||||
# need to broadcast because tmpdir is different on each process
|
||||
checkpoint_path = trainer.strategy.broadcast(checkpoint_path)
|
||||
trainer.save_checkpoint(checkpoint_path)
|
||||
saved_model = BoringModel.load_from_checkpoint(checkpoint_path)
|
||||
|
||||
# Assert model parameters are identical after loading
|
||||
for trained_param, loaded_param in zip(model.parameters(), saved_model.parameters()):
|
||||
assert torch.equal(trained_param.to("cpu"), loaded_param)
|
||||
|
||||
|
||||
def test_configure_launcher_create_processes_externally():
|
||||
class MyClusterEnvironment(ClusterEnvironment):
|
||||
@property
|
||||
def creates_processes_externally(self):
|
||||
return True
|
||||
|
||||
@property
|
||||
def main_address(self):
|
||||
return ""
|
||||
|
||||
@property
|
||||
def main_port(self):
|
||||
return 8080
|
||||
|
||||
@staticmethod
|
||||
def detect():
|
||||
return True
|
||||
|
||||
def world_size(self):
|
||||
return 1
|
||||
|
||||
def set_world_size(self):
|
||||
pass
|
||||
|
||||
def global_rank(self):
|
||||
return 0
|
||||
|
||||
def set_global_rank(self):
|
||||
pass
|
||||
|
||||
def local_rank(self):
|
||||
return 0
|
||||
|
||||
def node_rank(self):
|
||||
return 0
|
||||
|
||||
ddp_strategy = DDPStrategy(cluster_environment=MyClusterEnvironment())
|
||||
assert ddp_strategy.launcher is None
|
||||
ddp_strategy._configure_launcher()
|
||||
assert isinstance(ddp_strategy.launcher, _SubprocessScriptLauncher)
|
||||
|
||||
ddp_strategy.launcher._call_children_scripts = Mock()
|
||||
launch_fn = Mock()
|
||||
ddp_strategy.launcher.launch(launch_fn)
|
||||
ddp_strategy.launcher._call_children_scripts.assert_not_called()
|
||||
launch_fn.assert_called_once()
|
||||
|
||||
|
||||
class CheckOptimizerDeviceModel(BoringModel):
|
||||
def configure_optimizers(self):
|
||||
assert all(param.device.type == "cuda" for param in self.parameters())
|
||||
super().configure_optimizers()
|
||||
|
||||
|
||||
@RunIf(min_cuda_gpus=1)
|
||||
@pytest.mark.parametrize("strategy", ["ddp", "ddp_spawn"])
|
||||
def test_model_parameters_on_device_for_optimizer(strategy):
|
||||
"""Test that the strategy has moved the parameters to the device by the time the optimizer gets created."""
|
||||
model = CheckOptimizerDeviceModel()
|
||||
trainer = Trainer(
|
||||
default_root_dir=os.getcwd(),
|
||||
fast_dev_run=1,
|
||||
accelerator="gpu",
|
||||
devices=1,
|
||||
strategy=strategy,
|
||||
)
|
||||
trainer.fit(model)
|
||||
|
||||
|
||||
class BoringModelGPU(BoringModel):
|
||||
def on_train_start(self) -> None:
|
||||
# make sure that the model is on GPU when training
|
||||
assert self.device == torch.device(f"cuda:{self.trainer.strategy.local_rank}")
|
||||
self.start_cuda_memory = torch.cuda.memory_allocated()
|
||||
|
||||
|
||||
@RunIf(min_cuda_gpus=2, skip_windows=True, standalone=True)
|
||||
def test_ddp_with_2_gpus():
|
||||
"""Tests if device is set correctly when training and after teardown for DDPStrategy."""
|
||||
trainer = Trainer(
|
||||
accelerator="gpu",
|
||||
devices=2,
|
||||
strategy="ddp",
|
||||
fast_dev_run=True,
|
||||
enable_progress_bar=False,
|
||||
enable_model_summary=False,
|
||||
)
|
||||
# assert strategy attributes for device setting
|
||||
assert isinstance(trainer.strategy, DDPStrategy)
|
||||
local_rank = trainer.strategy.local_rank
|
||||
assert trainer.strategy.root_device == torch.device(f"cuda:{local_rank}")
|
||||
|
||||
model = BoringModelGPU()
|
||||
|
||||
trainer.fit(model)
|
||||
|
||||
# assert after training, model is moved to CPU and memory is deallocated
|
||||
assert model.device == torch.device("cpu")
|
||||
cuda_memory = torch.cuda.memory_allocated()
|
||||
assert cuda_memory < model.start_cuda_memory
|
||||
|
||||
|
||||
@RunIf(min_cuda_gpus=4, standalone=True)
|
||||
@mock.patch("torch.distributed.barrier")
|
||||
def test_ddp_barrier_non_consecutive_device_ids(barrier_mock, tmpdir):
|
||||
"""Test correct usage of barriers when device ids do not start at 0 or are not consecutive."""
|
||||
model = BoringModel()
|
||||
gpus = [1, 3]
|
||||
trainer = Trainer(
|
||||
default_root_dir=tmpdir,
|
||||
max_steps=1,
|
||||
accelerator="gpu",
|
||||
devices=gpus,
|
||||
strategy="ddp",
|
||||
enable_progress_bar=False,
|
||||
enable_model_summary=False,
|
||||
)
|
||||
trainer.fit(model)
|
||||
barrier_mock.assert_any_call(device_ids=[gpus[trainer.local_rank]])
|
||||
|
||||
|
||||
@mock.patch.dict(os.environ, {"LOCAL_RANK": "1"})
|
||||
def test_incorrect_ddp_script_spawning(tmpdir):
|
||||
"""Test an error message when user accidentally instructs Lightning to spawn children processes on rank > 0."""
|
||||
|
||||
class WronglyImplementedEnvironment(LightningEnvironment):
|
||||
@property
|
||||
def creates_processes_externally(self):
|
||||
# returning false no matter what means Lightning would spawn also on ranks > 0 new processes
|
||||
return False
|
||||
|
||||
model = BoringModel()
|
||||
trainer = Trainer(
|
||||
default_root_dir=tmpdir,
|
||||
strategy="ddp",
|
||||
accelerator="cpu",
|
||||
devices=2,
|
||||
plugins=[WronglyImplementedEnvironment()],
|
||||
)
|
||||
with pytest.raises(
|
||||
RuntimeError, match="Lightning attempted to launch new distributed processes with `local_rank > 0`."
|
||||
):
|
||||
trainer.fit(model)
|
|
@ -1,92 +0,0 @@
|
|||
# Copyright The Lightning AI team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import pytest
|
||||
from torch.multiprocessing import ProcessRaisedException
|
||||
|
||||
import tests_pytorch.helpers.pipelines as tpipes
|
||||
from lightning.pytorch.callbacks import EarlyStopping
|
||||
from lightning.pytorch.demos.boring_classes import BoringModel
|
||||
from lightning.pytorch.trainer import seed_everything, Trainer
|
||||
from tests_pytorch.helpers.datamodules import ClassifDataModule
|
||||
from tests_pytorch.helpers.runif import RunIf
|
||||
from tests_pytorch.helpers.simple_models import ClassificationModel
|
||||
from tests_pytorch.strategies.test_ddp_strategy import UnusedParametersModel
|
||||
|
||||
|
||||
@RunIf(min_cuda_gpus=2, sklearn=True)
|
||||
def test_multi_gpu_early_stop_ddp_spawn(tmpdir):
|
||||
seed_everything(42)
|
||||
|
||||
trainer_options = {
|
||||
"default_root_dir": tmpdir,
|
||||
"callbacks": [EarlyStopping(monitor="train_acc")],
|
||||
"max_epochs": 50,
|
||||
"limit_train_batches": 10,
|
||||
"limit_val_batches": 10,
|
||||
"accelerator": "gpu",
|
||||
"devices": [0, 1],
|
||||
"strategy": "ddp_spawn",
|
||||
}
|
||||
|
||||
dm = ClassifDataModule()
|
||||
model = ClassificationModel()
|
||||
tpipes.run_model_test(trainer_options, model, dm)
|
||||
|
||||
|
||||
@RunIf(min_cuda_gpus=2)
|
||||
def test_multi_gpu_model_ddp_spawn(tmpdir):
|
||||
seed_everything(42)
|
||||
|
||||
trainer_options = {
|
||||
"default_root_dir": tmpdir,
|
||||
"max_epochs": 1,
|
||||
"limit_train_batches": 10,
|
||||
"limit_val_batches": 10,
|
||||
"accelerator": "gpu",
|
||||
"devices": [0, 1],
|
||||
"strategy": "ddp_spawn",
|
||||
"enable_progress_bar": False,
|
||||
}
|
||||
|
||||
model = BoringModel()
|
||||
|
||||
tpipes.run_model_test(trainer_options, model)
|
||||
|
||||
|
||||
@RunIf(min_cuda_gpus=2)
|
||||
def test_ddp_all_dataloaders_passed_to_fit(tmpdir):
|
||||
"""Make sure DDP works with dataloaders passed to fit()"""
|
||||
model = BoringModel()
|
||||
|
||||
trainer = Trainer(
|
||||
default_root_dir=tmpdir,
|
||||
enable_progress_bar=False,
|
||||
max_epochs=1,
|
||||
limit_train_batches=0.2,
|
||||
limit_val_batches=0.2,
|
||||
accelerator="gpu",
|
||||
devices=[0, 1],
|
||||
strategy="ddp_spawn",
|
||||
)
|
||||
trainer.fit(model, train_dataloaders=model.train_dataloader(), val_dataloaders=model.val_dataloader())
|
||||
assert trainer.state.finished, "DDP doesn't work with dataloaders passed to fit()."
|
||||
|
||||
|
||||
def test_ddp_spawn_find_unused_parameters_exception():
|
||||
"""Test that the DDP strategy can change PyTorch's error message so that it's more useful for Lightning users."""
|
||||
trainer = Trainer(accelerator="cpu", devices=1, strategy="ddp_spawn", max_steps=2)
|
||||
with pytest.raises(
|
||||
ProcessRaisedException, match="It looks like your LightningModule has parameters that were not used in"
|
||||
):
|
||||
trainer.fit(UnusedParametersModel())
|
|
@ -1,177 +0,0 @@
|
|||
# Copyright The Lightning AI team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from datetime import timedelta
|
||||
from unittest import mock
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
from torch.nn.parallel.distributed import DistributedDataParallel
|
||||
|
||||
from lightning.pytorch import LightningModule, Trainer
|
||||
from lightning.pytorch.demos.boring_classes import BoringDataModule, BoringModel
|
||||
from lightning.pytorch.strategies import DDPStrategy
|
||||
from lightning.pytorch.strategies.launchers.multiprocessing import _MultiProcessingLauncher
|
||||
from lightning.pytorch.trainer.states import TrainerFn
|
||||
from tests_pytorch.helpers.runif import RunIf
|
||||
|
||||
|
||||
class BoringModelDDPCPU(BoringModel):
|
||||
def on_train_start(self) -> None:
|
||||
# make sure that the model is on CPU when training
|
||||
assert self.device == torch.device("cpu")
|
||||
|
||||
|
||||
class BoringCallbackDDPSpawnModel(BoringModel):
|
||||
def __init__(self, name: str, val: float):
|
||||
super().__init__()
|
||||
self.name = name
|
||||
self.val = val
|
||||
|
||||
def validation_step(self, batch, batch_idx):
|
||||
self.log(self.name, self.val)
|
||||
return super().validation_step(batch, batch_idx)
|
||||
|
||||
|
||||
@RunIf(skip_windows=True)
|
||||
def test_ddp_cpu():
|
||||
"""Tests if device is set correctly when training for DDPStrategy."""
|
||||
trainer = Trainer(devices=2, strategy="ddp_spawn", accelerator="cpu", fast_dev_run=True)
|
||||
# assert strategy attributes for device setting
|
||||
assert isinstance(trainer.strategy, DDPStrategy)
|
||||
assert trainer.strategy.root_device == torch.device("cpu")
|
||||
model = BoringModelDDPCPU()
|
||||
trainer.fit(model)
|
||||
|
||||
|
||||
class CustomMultiProcessingLauncher(_MultiProcessingLauncher):
|
||||
def get_extra_results(self, trainer):
|
||||
extra = super().get_extra_results(trainer)
|
||||
extra["test_val"] = "test_val"
|
||||
return extra
|
||||
|
||||
def update_main_process_results(self, trainer, extra) -> None:
|
||||
trainer.strategy.test_val = extra.pop("test_val")
|
||||
return super().update_main_process_results(trainer, extra)
|
||||
|
||||
|
||||
class TestDDPSpawnStrategy(DDPStrategy):
|
||||
def _configure_launcher(self):
|
||||
self._launcher = CustomMultiProcessingLauncher(self)
|
||||
|
||||
|
||||
@RunIf(skip_windows=True)
|
||||
def test_ddp_spawn_add_get_queue(tmpdir):
|
||||
"""Tests get_extra_results/update_main_process_results with DDPSpawnStrategy."""
|
||||
ddp_spawn_strategy = TestDDPSpawnStrategy()
|
||||
trainer = Trainer(
|
||||
default_root_dir=tmpdir, fast_dev_run=True, accelerator="cpu", devices=2, strategy=ddp_spawn_strategy
|
||||
)
|
||||
|
||||
val: float = 1.0
|
||||
val_name: str = "val_acc"
|
||||
model = BoringCallbackDDPSpawnModel(val_name, val)
|
||||
dm = BoringDataModule()
|
||||
trainer.fit(model, datamodule=dm)
|
||||
assert trainer.callback_metrics[val_name] == torch.tensor(val)
|
||||
assert ddp_spawn_strategy.test_val == "test_val"
|
||||
|
||||
|
||||
class BoringModelDDP(BoringModel):
|
||||
def on_train_start(self) -> None:
|
||||
"""Check if trainer module is wrapped as DistributedDataParallel during training stage."""
|
||||
assert isinstance(self.trainer.model, DistributedDataParallel)
|
||||
|
||||
def on_validation_start(self) -> None:
|
||||
"""Check if trainer module remains as LightningModule during test stage."""
|
||||
if self.trainer.state.fn == TrainerFn.FITTING:
|
||||
assert isinstance(self.trainer.model, DistributedDataParallel)
|
||||
else:
|
||||
assert isinstance(self.trainer.model, LightningModule)
|
||||
|
||||
def on_test_start(self) -> None:
|
||||
"""Check if trainer module remains as LightningModule during test stage."""
|
||||
assert isinstance(self.trainer.model, LightningModule)
|
||||
|
||||
def on_predict_start(self) -> None:
|
||||
"""Check if trainer module remains as LightningModule during prediction stage."""
|
||||
assert isinstance(self.trainer.model, LightningModule)
|
||||
|
||||
|
||||
@RunIf(skip_windows=True)
|
||||
def test_ddp_spawn_configure_ddp(tmpdir):
|
||||
"""Tests with ddp spawn strategy."""
|
||||
trainer = Trainer(default_root_dir=tmpdir, accelerator="cpu", devices=2, strategy="ddp_spawn", fast_dev_run=True)
|
||||
|
||||
model = BoringModelDDP()
|
||||
|
||||
trainer.fit(model)
|
||||
trainer.validate(model, dataloaders=model.val_dataloader())
|
||||
trainer.test(model, dataloaders=model.test_dataloader())
|
||||
trainer.predict(model, dataloaders=model.predict_dataloader())
|
||||
|
||||
|
||||
@mock.patch("torch.distributed.init_process_group")
|
||||
def test_ddp_spawn_strategy_set_timeout(mock_init_process_group):
|
||||
"""Test that the timeout gets passed to the ``torch.distributed.init_process_group`` function."""
|
||||
test_timedelta = timedelta(seconds=30)
|
||||
model = BoringModel()
|
||||
ddp_spawn_strategy = DDPStrategy(start_method="spawn", timeout=test_timedelta)
|
||||
trainer = Trainer(
|
||||
max_epochs=1,
|
||||
accelerator="cpu",
|
||||
strategy=ddp_spawn_strategy,
|
||||
)
|
||||
# test wrap the model if fitting
|
||||
trainer.state.fn = TrainerFn.FITTING
|
||||
trainer.strategy.connect(model)
|
||||
trainer.lightning_module.trainer = trainer
|
||||
trainer.strategy.setup_environment()
|
||||
|
||||
process_group_backend = trainer.strategy._get_process_group_backend()
|
||||
global_rank = trainer.strategy.cluster_environment.global_rank()
|
||||
world_size = trainer.strategy.cluster_environment.world_size()
|
||||
mock_init_process_group.assert_called_with(
|
||||
process_group_backend, rank=global_rank, world_size=world_size, timeout=test_timedelta
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
("strategy_name", "expected_ddp_kwargs"),
|
||||
[
|
||||
("ddp_spawn", {}),
|
||||
pytest.param("ddp_fork", {}, marks=RunIf(skip_windows=True)),
|
||||
pytest.param("ddp_notebook", {}, marks=RunIf(skip_windows=True)),
|
||||
("ddp_spawn_find_unused_parameters_false", {"find_unused_parameters": False}),
|
||||
("ddp_spawn_find_unused_parameters_true", {"find_unused_parameters": True}),
|
||||
pytest.param(
|
||||
"ddp_fork_find_unused_parameters_false", {"find_unused_parameters": False}, marks=RunIf(skip_windows=True)
|
||||
),
|
||||
pytest.param(
|
||||
"ddp_fork_find_unused_parameters_true", {"find_unused_parameters": True}, marks=RunIf(skip_windows=True)
|
||||
),
|
||||
pytest.param(
|
||||
"ddp_notebook_find_unused_parameters_false",
|
||||
{"find_unused_parameters": False},
|
||||
marks=RunIf(skip_windows=True),
|
||||
),
|
||||
pytest.param(
|
||||
"ddp_notebook_find_unused_parameters_true",
|
||||
{"find_unused_parameters": True},
|
||||
marks=RunIf(skip_windows=True),
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_ddp_kwargs_from_registry(strategy_name, expected_ddp_kwargs, mps_count_0):
|
||||
trainer = Trainer(strategy=strategy_name)
|
||||
assert trainer.strategy._ddp_kwargs == expected_ddp_kwargs
|
|
@ -1,303 +0,0 @@
|
|||
# Copyright The Lightning AI team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import os
|
||||
from datetime import timedelta
|
||||
from unittest import mock
|
||||
from unittest.mock import Mock
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
from torch.distributed.optim import ZeroRedundancyOptimizer
|
||||
from torch.nn.parallel import DistributedDataParallel
|
||||
|
||||
from lightning.fabric.plugins.environments import ClusterEnvironment, LightningEnvironment
|
||||
from lightning.pytorch import LightningModule, Trainer
|
||||
from lightning.pytorch.demos.boring_classes import BoringModel
|
||||
from lightning.pytorch.strategies import DDPStrategy
|
||||
from lightning.pytorch.strategies.launchers import _SubprocessScriptLauncher
|
||||
from lightning.pytorch.trainer.states import TrainerFn
|
||||
from tests_pytorch.helpers.runif import RunIf
|
||||
|
||||
|
||||
class BoringModelGPU(BoringModel):
|
||||
def on_train_start(self) -> None:
|
||||
# make sure that the model is on GPU when training
|
||||
assert self.device == torch.device(f"cuda:{self.trainer.strategy.local_rank}")
|
||||
self.start_cuda_memory = torch.cuda.memory_allocated()
|
||||
|
||||
|
||||
@RunIf(min_cuda_gpus=2, skip_windows=True, standalone=True)
|
||||
def test_ddp_with_2_gpus():
|
||||
"""Tests if device is set correctly when training and after teardown for DDPStrategy."""
|
||||
trainer = Trainer(
|
||||
accelerator="gpu",
|
||||
devices=2,
|
||||
strategy="ddp",
|
||||
fast_dev_run=True,
|
||||
enable_progress_bar=False,
|
||||
enable_model_summary=False,
|
||||
)
|
||||
# assert strategy attributes for device setting
|
||||
assert isinstance(trainer.strategy, DDPStrategy)
|
||||
local_rank = trainer.strategy.local_rank
|
||||
assert trainer.strategy.root_device == torch.device(f"cuda:{local_rank}")
|
||||
|
||||
model = BoringModelGPU()
|
||||
|
||||
trainer.fit(model)
|
||||
|
||||
# assert after training, model is moved to CPU and memory is deallocated
|
||||
assert model.device == torch.device("cpu")
|
||||
cuda_memory = torch.cuda.memory_allocated()
|
||||
assert cuda_memory < model.start_cuda_memory
|
||||
|
||||
|
||||
class BarrierModel(BoringModel):
|
||||
def setup(self, stage=None):
|
||||
assert not isinstance(self.trainer.strategy.model, DistributedDataParallel)
|
||||
self.trainer.strategy.barrier("barrier before model is wrapped")
|
||||
|
||||
def on_train_start(self):
|
||||
assert isinstance(self.trainer.strategy.model, DistributedDataParallel)
|
||||
self.trainer.strategy.barrier("barrier after model is wrapped")
|
||||
|
||||
|
||||
@RunIf(min_cuda_gpus=4, standalone=True)
|
||||
@mock.patch("torch.distributed.barrier")
|
||||
def test_ddp_barrier_non_consecutive_device_ids(barrier_mock, tmpdir):
|
||||
"""Test correct usage of barriers when device ids do not start at 0 or are not consecutive."""
|
||||
model = BoringModel()
|
||||
gpus = [1, 3]
|
||||
trainer = Trainer(
|
||||
default_root_dir=tmpdir,
|
||||
max_steps=1,
|
||||
accelerator="gpu",
|
||||
devices=gpus,
|
||||
strategy="ddp",
|
||||
enable_progress_bar=False,
|
||||
enable_model_summary=False,
|
||||
)
|
||||
trainer.fit(model)
|
||||
barrier_mock.assert_any_call(device_ids=[gpus[trainer.local_rank]])
|
||||
|
||||
|
||||
@mock.patch.dict(os.environ, {"LOCAL_RANK": "1"})
|
||||
def test_incorrect_ddp_script_spawning(tmpdir):
|
||||
"""Test an error message when user accidentally instructs Lightning to spawn children processes on rank > 0."""
|
||||
|
||||
class WronglyImplementedEnvironment(LightningEnvironment):
|
||||
@property
|
||||
def creates_processes_externally(self):
|
||||
# returning false no matter what means Lightning would spawn also on ranks > 0 new processes
|
||||
return False
|
||||
|
||||
model = BoringModel()
|
||||
trainer = Trainer(
|
||||
default_root_dir=tmpdir,
|
||||
strategy="ddp",
|
||||
accelerator="cpu",
|
||||
devices=2,
|
||||
plugins=[WronglyImplementedEnvironment()],
|
||||
)
|
||||
with pytest.raises(
|
||||
RuntimeError, match="Lightning attempted to launch new distributed processes with `local_rank > 0`."
|
||||
):
|
||||
trainer.fit(model)
|
||||
|
||||
|
||||
@RunIf(skip_windows=True)
|
||||
def test_ddp_configure_ddp(mps_count_0):
|
||||
"""Tests with ddp strategy."""
|
||||
model = BoringModel()
|
||||
ddp_strategy = DDPStrategy()
|
||||
trainer = Trainer(
|
||||
max_epochs=1,
|
||||
strategy=ddp_strategy,
|
||||
)
|
||||
# test wrap the model if fitting
|
||||
trainer.state.fn = TrainerFn.FITTING
|
||||
trainer.strategy.connect(model)
|
||||
trainer.lightning_module.trainer = trainer
|
||||
trainer.strategy.setup_environment()
|
||||
assert isinstance(trainer.model, LightningModule)
|
||||
trainer.strategy.setup(trainer)
|
||||
# in DDPStrategy configure_ddp(), model wrapped by DistributedDataParallel
|
||||
assert isinstance(trainer.model, DistributedDataParallel)
|
||||
|
||||
ddp_strategy = DDPStrategy()
|
||||
trainer = Trainer(
|
||||
max_epochs=1,
|
||||
strategy=ddp_strategy,
|
||||
)
|
||||
# test do not wrap the model if TrainerFn is not fitting
|
||||
trainer.state.fn = TrainerFn.VALIDATING
|
||||
trainer.strategy.connect(model)
|
||||
trainer.lightning_module.trainer = trainer
|
||||
trainer.strategy.setup_environment()
|
||||
trainer.strategy.setup(trainer)
|
||||
# in DDPStrategy configure_ddp(), model are still LightningModule
|
||||
assert isinstance(trainer.model, LightningModule)
|
||||
|
||||
|
||||
@RunIf(min_cuda_gpus=1)
|
||||
@pytest.mark.parametrize("trainer_fn", [TrainerFn.VALIDATING, TrainerFn.TESTING, TrainerFn.PREDICTING])
|
||||
def test_ddp_dont_configure_sync_batchnorm(trainer_fn):
|
||||
model = BoringModelGPU()
|
||||
model.layer = torch.nn.BatchNorm1d(10)
|
||||
ddp_strategy = DDPStrategy()
|
||||
trainer = Trainer(accelerator="gpu", devices=1, strategy=ddp_strategy, sync_batchnorm=True)
|
||||
trainer.state.fn = trainer_fn
|
||||
trainer.strategy.connect(model)
|
||||
trainer.lightning_module.trainer = trainer
|
||||
trainer.strategy.setup_environment()
|
||||
assert isinstance(trainer.model, LightningModule)
|
||||
trainer.strategy.setup(trainer)
|
||||
# because TrainerFn is not FITTING, model is not configured with sync batchnorm
|
||||
assert not isinstance(trainer.strategy.model.layer, torch.nn.modules.batchnorm.SyncBatchNorm)
|
||||
|
||||
|
||||
class CheckOptimizerDeviceModel(BoringModel):
|
||||
def configure_optimizers(self):
|
||||
assert all(param.device.type == "cuda" for param in self.parameters())
|
||||
super().configure_optimizers()
|
||||
|
||||
|
||||
@RunIf(min_cuda_gpus=1)
|
||||
@pytest.mark.parametrize("strategy", ["ddp", "ddp_spawn"])
|
||||
def test_model_parameters_on_device_for_optimizer(strategy):
|
||||
"""Test that the strategy has moved the parameters to the device by the time the optimizer gets created."""
|
||||
model = CheckOptimizerDeviceModel()
|
||||
trainer = Trainer(
|
||||
default_root_dir=os.getcwd(),
|
||||
fast_dev_run=1,
|
||||
accelerator="gpu",
|
||||
devices=1,
|
||||
strategy=strategy,
|
||||
)
|
||||
trainer.fit(model)
|
||||
|
||||
|
||||
def test_configure_launcher_create_processes_externally():
|
||||
class MyClusterEnvironment(ClusterEnvironment):
|
||||
@property
|
||||
def creates_processes_externally(self):
|
||||
return True
|
||||
|
||||
@property
|
||||
def main_address(self):
|
||||
return ""
|
||||
|
||||
@property
|
||||
def main_port(self):
|
||||
return 8080
|
||||
|
||||
@staticmethod
|
||||
def detect():
|
||||
return True
|
||||
|
||||
def world_size(self):
|
||||
return 1
|
||||
|
||||
def set_world_size(self):
|
||||
pass
|
||||
|
||||
def global_rank(self):
|
||||
return 0
|
||||
|
||||
def set_global_rank(self):
|
||||
pass
|
||||
|
||||
def local_rank(self):
|
||||
return 0
|
||||
|
||||
def node_rank(self):
|
||||
return 0
|
||||
|
||||
ddp_strategy = DDPStrategy(cluster_environment=MyClusterEnvironment())
|
||||
assert ddp_strategy.launcher is None
|
||||
ddp_strategy._configure_launcher()
|
||||
assert isinstance(ddp_strategy.launcher, _SubprocessScriptLauncher)
|
||||
|
||||
ddp_strategy.launcher._call_children_scripts = Mock()
|
||||
launch_fn = Mock()
|
||||
ddp_strategy.launcher.launch(launch_fn)
|
||||
ddp_strategy.launcher._call_children_scripts.assert_not_called()
|
||||
launch_fn.assert_called_once()
|
||||
|
||||
|
||||
@mock.patch("torch.distributed.init_process_group")
|
||||
def test_ddp_strategy_set_timeout(mock_init_process_group):
|
||||
"""Test that the timeout gets passed to the ``torch.distributed.init_process_group`` function."""
|
||||
test_timedelta = timedelta(seconds=30)
|
||||
model = BoringModel()
|
||||
ddp_strategy = DDPStrategy(timeout=test_timedelta)
|
||||
trainer = Trainer(
|
||||
max_epochs=1,
|
||||
accelerator="cpu",
|
||||
strategy=ddp_strategy,
|
||||
)
|
||||
# test wrap the model if fitting
|
||||
trainer.strategy.connect(model)
|
||||
trainer.lightning_module.trainer = trainer
|
||||
trainer.strategy.setup_environment()
|
||||
|
||||
process_group_backend = trainer.strategy._get_process_group_backend()
|
||||
global_rank = trainer.strategy.cluster_environment.global_rank()
|
||||
world_size = trainer.strategy.cluster_environment.world_size()
|
||||
mock_init_process_group.assert_called_with(
|
||||
process_group_backend, rank=global_rank, world_size=world_size, timeout=test_timedelta
|
||||
)
|
||||
|
||||
|
||||
class BoringZeroRedundancyOptimizerModel(BoringModel):
|
||||
def configure_optimizers(self):
|
||||
return ZeroRedundancyOptimizer(self.layer.parameters(), optimizer_class=torch.optim.Adam, lr=0.1)
|
||||
|
||||
|
||||
@RunIf(min_cuda_gpus=2, skip_windows=True)
|
||||
@pytest.mark.parametrize("strategy", [pytest.param("ddp", marks=RunIf(standalone=True)), "ddp_spawn"])
|
||||
def test_ddp_strategy_checkpoint_zero_redundancy_optimizer(tmpdir, strategy):
|
||||
"""Test to ensure that checkpoint is saved correctly when using zero redundancy optimizer."""
|
||||
model = BoringZeroRedundancyOptimizerModel()
|
||||
trainer = Trainer(accelerator="gpu", devices=2, strategy=strategy, max_steps=1)
|
||||
|
||||
trainer.fit(model)
|
||||
|
||||
checkpoint_path = os.path.join(tmpdir, "model.pt")
|
||||
# need to broadcast because tmpdir is different on each process
|
||||
checkpoint_path = trainer.strategy.broadcast(checkpoint_path)
|
||||
trainer.save_checkpoint(checkpoint_path)
|
||||
saved_model = BoringModel.load_from_checkpoint(checkpoint_path)
|
||||
|
||||
# Assert model parameters are identical after loading
|
||||
for trained_param, loaded_param in zip(model.parameters(), saved_model.parameters()):
|
||||
assert torch.equal(trained_param.to("cpu"), loaded_param)
|
||||
|
||||
|
||||
class UnusedParametersModel(BoringModel):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.intermediate_layer = torch.nn.Linear(32, 32)
|
||||
|
||||
def training_step(self, batch, batch_idx):
|
||||
with torch.no_grad():
|
||||
batch = self.intermediate_layer(batch)
|
||||
return super().training_step(batch, batch_idx)
|
||||
|
||||
|
||||
def test_ddp_strategy_find_unused_parameters_exception():
|
||||
"""Test that the DDP strategy can change PyTorch's error message so that it's more useful for Lightning users."""
|
||||
trainer = Trainer(accelerator="cpu", devices=1, strategy="ddp", max_steps=2)
|
||||
with pytest.raises(RuntimeError, match="It looks like your LightningModule has parameters that were not used in"):
|
||||
trainer.fit(UnusedParametersModel())
|
|
@ -807,3 +807,29 @@ def test_save_load_sharded_state_dict(tmp_path):
|
|||
strategy = FSDPStrategy(auto_wrap_policy={nn.Linear}, state_dict_type="sharded")
|
||||
trainer = Trainer(**trainer_kwargs, strategy=strategy)
|
||||
trainer.fit(model, ckpt_path=checkpoint_path)
|
||||
|
||||
|
||||
@RunIf(min_torch="1.12")
|
||||
@mock.patch("lightning.pytorch.strategies.fsdp.torch.load")
|
||||
@mock.patch("lightning.pytorch.strategies.fsdp._lazy_load")
|
||||
@mock.patch("lightning.pytorch.strategies.fsdp._load_raw_module_state")
|
||||
def test_fsdp_lazy_load_full_state_dict(_, lazy_load_mock, torch_load_mock, tmp_path):
|
||||
"""Test that loading a single file (full state) is lazy to reduce peak CPU memory usage."""
|
||||
model = BoringModel()
|
||||
checkpoint = {"state_dict": model.state_dict()}
|
||||
lazy_load_mock.return_value = checkpoint
|
||||
|
||||
strategy = FSDPStrategy()
|
||||
trainer = Trainer()
|
||||
model.trainer = trainer
|
||||
strategy._lightning_module = model
|
||||
strategy.model = model
|
||||
|
||||
file = tmp_path / "test.ckpt"
|
||||
file.touch()
|
||||
|
||||
strategy.load_checkpoint(checkpoint_path=file)
|
||||
if _TORCH_GREATER_EQUAL_2_0:
|
||||
lazy_load_mock.assert_called_once()
|
||||
else:
|
||||
torch_load_mock.assert_called_once()
|
||||
|
|
Loading…
Reference in New Issue