Standalone Lite: DataParallel Strategy (#14681)

Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com>
This commit is contained in:
Adrian Wälchli 2022-09-15 01:27:53 +02:00 committed by GitHub
parent c2378bd3b1
commit 7867d152b3
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 138 additions and 2 deletions

View File

@ -11,6 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from lightning_lite.strategies.dp import DataParallelStrategy # noqa: F401
from lightning_lite.strategies.parallel import ParallelStrategy # noqa: F401
from lightning_lite.strategies.registry import _call_register_strategies, _StrategyRegistry
from lightning_lite.strategies.single_device import SingleDeviceStrategy # noqa: F401

View File

@ -0,0 +1,84 @@
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, List, Optional, Union
import torch
from torch import Tensor
from torch.nn import DataParallel, Module
from lightning_lite.accelerators import Accelerator
from lightning_lite.plugins.io.checkpoint_plugin import CheckpointIO
from lightning_lite.plugins.precision import Precision
from lightning_lite.strategies.parallel import ParallelStrategy
from lightning_lite.strategies.strategy import TBroadcast, TReduce
from lightning_lite.utilities.apply_func import apply_to_collection
from lightning_lite.utilities.distributed import ReduceOp
class DataParallelStrategy(ParallelStrategy):
"""Implements data-parallel training in a single process, i.e., the model gets replicated to each device and
each gets a split of the data."""
def __init__(
self,
accelerator: Optional[Accelerator] = None,
parallel_devices: Optional[List[torch.device]] = None,
checkpoint_io: Optional[CheckpointIO] = None,
precision_plugin: Optional[Precision] = None,
):
super().__init__(
accelerator=accelerator,
parallel_devices=parallel_devices,
cluster_environment=None,
checkpoint_io=checkpoint_io,
precision_plugin=precision_plugin,
)
@property
def root_device(self) -> torch.device:
assert self.parallel_devices is not None
return self.parallel_devices[0]
def setup_module(self, module: Module) -> DataParallel:
"""Wraps the given model into a :class:`~torch.nn.parallel.DataParallel` module."""
return DataParallel(module=module, device_ids=self.parallel_devices)
def module_to_device(self, module: Module) -> None:
module.to(self.root_device)
def batch_to_device(self, batch: Any, device: Optional[torch.device] = None) -> Any:
# DataParallel handles the transfer of batch to the device
return batch
def reduce(
self, collection: TReduce, group: Optional[Any] = None, reduce_op: Optional[Union[ReduceOp, str]] = "mean"
) -> TReduce:
def mean(t: Tensor) -> Tensor:
original_dtype = t.dtype
return t.float().mean().to(original_dtype)
return apply_to_collection(collection, Tensor, mean)
def barrier(self, *args: Any, **kwargs: Any) -> None:
pass
def broadcast(self, obj: TBroadcast, src: int = 0) -> TBroadcast:
return obj
def reduce_boolean_decision(self, decision: bool) -> bool:
return decision
@classmethod
def register_strategies(cls, strategy_registry: Dict) -> None:
strategy_registry.register("dp", cls, description=cls.__class__.__name__)

View File

@ -0,0 +1,50 @@
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from unittest import mock
from unittest.mock import Mock
import torch
from lightning_lite.strategies import DataParallelStrategy
def test_data_parallel_root_device():
strategy = DataParallelStrategy()
strategy.parallel_devices = [torch.device("cuda", 2), torch.device("cuda", 0), torch.device("cuda", 1)]
assert strategy.root_device == torch.device("cuda", 2)
def test_data_parallel_ranks():
strategy = DataParallelStrategy()
assert strategy.world_size == 1
assert strategy.local_rank == 0
assert strategy.global_rank == 0
assert strategy.is_global_zero
@mock.patch("lightning_lite.strategies.dp.DataParallel")
def test_data_parallel_setup_module(data_parallel_mock):
strategy = DataParallelStrategy()
strategy.parallel_devices = [0, 2, 1]
module = torch.nn.Linear(2, 2)
wrapped_module = strategy.setup_module(module)
assert wrapped_module == data_parallel_mock(module=module, device_ids=[0, 2, 1])
def test_data_parallel_module_to_device():
strategy = DataParallelStrategy()
strategy.parallel_devices = [torch.device("cuda", 2)]
module = Mock()
strategy.module_to_device(module)
module.to.assert_called_with(torch.device("cuda", 2))

View File

@ -41,6 +41,7 @@ def test_strategy_registry_with_new_strategy():
def test_available_strategies_in_registry():
assert STRATEGY_REGISTRY.available_strategies() == [
assert set(STRATEGY_REGISTRY.available_strategies()) == {
"dp",
"single_tpu",
]
}