Standalone Lite: DataParallel Strategy (#14681)
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com>
This commit is contained in:
parent
c2378bd3b1
commit
7867d152b3
|
@ -11,6 +11,7 @@
|
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from lightning_lite.strategies.dp import DataParallelStrategy # noqa: F401
|
||||
from lightning_lite.strategies.parallel import ParallelStrategy # noqa: F401
|
||||
from lightning_lite.strategies.registry import _call_register_strategies, _StrategyRegistry
|
||||
from lightning_lite.strategies.single_device import SingleDeviceStrategy # noqa: F401
|
||||
|
|
|
@ -0,0 +1,84 @@
|
|||
# Copyright The PyTorch Lightning team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
|
||||
import torch
|
||||
from torch import Tensor
|
||||
from torch.nn import DataParallel, Module
|
||||
|
||||
from lightning_lite.accelerators import Accelerator
|
||||
from lightning_lite.plugins.io.checkpoint_plugin import CheckpointIO
|
||||
from lightning_lite.plugins.precision import Precision
|
||||
from lightning_lite.strategies.parallel import ParallelStrategy
|
||||
from lightning_lite.strategies.strategy import TBroadcast, TReduce
|
||||
from lightning_lite.utilities.apply_func import apply_to_collection
|
||||
from lightning_lite.utilities.distributed import ReduceOp
|
||||
|
||||
|
||||
class DataParallelStrategy(ParallelStrategy):
|
||||
"""Implements data-parallel training in a single process, i.e., the model gets replicated to each device and
|
||||
each gets a split of the data."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
accelerator: Optional[Accelerator] = None,
|
||||
parallel_devices: Optional[List[torch.device]] = None,
|
||||
checkpoint_io: Optional[CheckpointIO] = None,
|
||||
precision_plugin: Optional[Precision] = None,
|
||||
):
|
||||
super().__init__(
|
||||
accelerator=accelerator,
|
||||
parallel_devices=parallel_devices,
|
||||
cluster_environment=None,
|
||||
checkpoint_io=checkpoint_io,
|
||||
precision_plugin=precision_plugin,
|
||||
)
|
||||
|
||||
@property
|
||||
def root_device(self) -> torch.device:
|
||||
assert self.parallel_devices is not None
|
||||
return self.parallel_devices[0]
|
||||
|
||||
def setup_module(self, module: Module) -> DataParallel:
|
||||
"""Wraps the given model into a :class:`~torch.nn.parallel.DataParallel` module."""
|
||||
return DataParallel(module=module, device_ids=self.parallel_devices)
|
||||
|
||||
def module_to_device(self, module: Module) -> None:
|
||||
module.to(self.root_device)
|
||||
|
||||
def batch_to_device(self, batch: Any, device: Optional[torch.device] = None) -> Any:
|
||||
# DataParallel handles the transfer of batch to the device
|
||||
return batch
|
||||
|
||||
def reduce(
|
||||
self, collection: TReduce, group: Optional[Any] = None, reduce_op: Optional[Union[ReduceOp, str]] = "mean"
|
||||
) -> TReduce:
|
||||
def mean(t: Tensor) -> Tensor:
|
||||
original_dtype = t.dtype
|
||||
return t.float().mean().to(original_dtype)
|
||||
|
||||
return apply_to_collection(collection, Tensor, mean)
|
||||
|
||||
def barrier(self, *args: Any, **kwargs: Any) -> None:
|
||||
pass
|
||||
|
||||
def broadcast(self, obj: TBroadcast, src: int = 0) -> TBroadcast:
|
||||
return obj
|
||||
|
||||
def reduce_boolean_decision(self, decision: bool) -> bool:
|
||||
return decision
|
||||
|
||||
@classmethod
|
||||
def register_strategies(cls, strategy_registry: Dict) -> None:
|
||||
strategy_registry.register("dp", cls, description=cls.__class__.__name__)
|
|
@ -0,0 +1,50 @@
|
|||
# Copyright The PyTorch Lightning team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from unittest import mock
|
||||
from unittest.mock import Mock
|
||||
|
||||
import torch
|
||||
|
||||
from lightning_lite.strategies import DataParallelStrategy
|
||||
|
||||
|
||||
def test_data_parallel_root_device():
|
||||
strategy = DataParallelStrategy()
|
||||
strategy.parallel_devices = [torch.device("cuda", 2), torch.device("cuda", 0), torch.device("cuda", 1)]
|
||||
assert strategy.root_device == torch.device("cuda", 2)
|
||||
|
||||
|
||||
def test_data_parallel_ranks():
|
||||
strategy = DataParallelStrategy()
|
||||
assert strategy.world_size == 1
|
||||
assert strategy.local_rank == 0
|
||||
assert strategy.global_rank == 0
|
||||
assert strategy.is_global_zero
|
||||
|
||||
|
||||
@mock.patch("lightning_lite.strategies.dp.DataParallel")
|
||||
def test_data_parallel_setup_module(data_parallel_mock):
|
||||
strategy = DataParallelStrategy()
|
||||
strategy.parallel_devices = [0, 2, 1]
|
||||
module = torch.nn.Linear(2, 2)
|
||||
wrapped_module = strategy.setup_module(module)
|
||||
assert wrapped_module == data_parallel_mock(module=module, device_ids=[0, 2, 1])
|
||||
|
||||
|
||||
def test_data_parallel_module_to_device():
|
||||
strategy = DataParallelStrategy()
|
||||
strategy.parallel_devices = [torch.device("cuda", 2)]
|
||||
module = Mock()
|
||||
strategy.module_to_device(module)
|
||||
module.to.assert_called_with(torch.device("cuda", 2))
|
|
@ -41,6 +41,7 @@ def test_strategy_registry_with_new_strategy():
|
|||
|
||||
|
||||
def test_available_strategies_in_registry():
|
||||
assert STRATEGY_REGISTRY.available_strategies() == [
|
||||
assert set(STRATEGY_REGISTRY.available_strategies()) == {
|
||||
"dp",
|
||||
"single_tpu",
|
||||
]
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue