Fix result transfer in multiprocessing launcher on multi-node (#15567)
* Fix result transfer in multiprocessing launcher on multi-node * add simple test * add comment * update test * changelog * use tempfile * fix * assert None * unused import * add comment
This commit is contained in:
parent
0886e6352e
commit
7767fd36b6
|
@ -61,6 +61,8 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).
|
|||
|
||||
- Fixed an issue with `WandbLogger(log_model=True|'all)` raising an error and not being able to serialize tensors in the metadata ([#15544](https://github.com/Lightning-AI/lightning/pull/15544))
|
||||
|
||||
- Fixed model state transfer in multiprocessing launcher when running multi-node ([#15567](https://github.com/Lightning-AI/lightning/pull/15567))
|
||||
|
||||
|
||||
## [1.8.0] - 2022-11-01
|
||||
|
||||
|
|
|
@ -12,6 +12,7 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import os
|
||||
import tempfile
|
||||
from collections import UserList
|
||||
from dataclasses import dataclass
|
||||
from multiprocessing.queues import SimpleQueue
|
||||
|
@ -172,13 +173,14 @@ class _MultiProcessingLauncher(_Launcher):
|
|||
# requires to compute the state_dict on all processes in case Metrics are present
|
||||
state_dict = trainer.lightning_module.state_dict()
|
||||
|
||||
if self._strategy.global_rank != 0:
|
||||
if self._strategy.local_rank != 0:
|
||||
return None
|
||||
|
||||
# save the last weights
|
||||
weights_path = None
|
||||
if trainer.state.fn == TrainerFn.FITTING:
|
||||
weights_path = os.path.join(trainer.default_root_dir, ".temp.ckpt")
|
||||
# use tempdir here to avoid race conditions because the filesystem may be shared between nodes
|
||||
weights_path = os.path.join(tempfile.mkdtemp(), ".temp.ckpt")
|
||||
self._strategy.checkpoint_io.save_checkpoint(state_dict, weights_path)
|
||||
|
||||
# adds the `callback_metrics` to the queue
|
||||
|
|
|
@ -11,13 +11,19 @@
|
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import os
|
||||
from unittest import mock
|
||||
from unittest.mock import ANY, Mock
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from lightning_lite.plugins import ClusterEnvironment
|
||||
from pytorch_lightning import Trainer
|
||||
from pytorch_lightning.demos.boring_classes import BoringModel
|
||||
from pytorch_lightning.strategies import DDPSpawnStrategy
|
||||
from pytorch_lightning.strategies.launchers.multiprocessing import _GlobalStateSnapshot, _MultiProcessingLauncher
|
||||
from pytorch_lightning.trainer.states import TrainerFn
|
||||
from tests_pytorch.helpers.runif import RunIf
|
||||
|
||||
|
||||
|
@ -76,3 +82,45 @@ def test_global_state_snapshot():
|
|||
assert torch.are_deterministic_algorithms_enabled()
|
||||
assert not torch.backends.cudnn.benchmark
|
||||
assert torch.initial_seed() == 123
|
||||
|
||||
|
||||
@pytest.mark.parametrize("trainer_fn", [TrainerFn.FITTING, "other"])
|
||||
@pytest.mark.parametrize("fake_node_rank", [0, 1])
|
||||
@pytest.mark.parametrize("fake_local_rank", [0, 1])
|
||||
def test_collect_rank_zero_results(trainer_fn, fake_node_rank, fake_local_rank, tmpdir):
|
||||
"""Tests that the spawn strategy transfers the new weights to the main process and deletes the temporary
|
||||
file."""
|
||||
model = Mock(wraps=BoringModel(), spec=BoringModel)
|
||||
fake_global_rank = 2 * fake_node_rank + fake_local_rank
|
||||
|
||||
cluster_environment = Mock(spec=ClusterEnvironment)
|
||||
cluster_environment.world_size.return_value = 4
|
||||
cluster_environment.node_rank.return_value = fake_node_rank
|
||||
cluster_environment.local_rank.return_value = fake_local_rank
|
||||
cluster_environment.global_rank.return_value = fake_global_rank
|
||||
|
||||
strategy = DDPSpawnStrategy(cluster_environment=cluster_environment)
|
||||
strategy._local_rank = fake_local_rank
|
||||
|
||||
launcher = _MultiProcessingLauncher(strategy=strategy)
|
||||
trainer = Trainer(default_root_dir=tmpdir, strategy=strategy)
|
||||
|
||||
assert strategy.node_rank == fake_node_rank
|
||||
assert strategy.local_rank == fake_local_rank
|
||||
assert strategy.global_rank == fake_global_rank
|
||||
|
||||
trainer.strategy.connect(model)
|
||||
trainer.state.fn = trainer_fn # pretend we are in a particular trainer state
|
||||
|
||||
spawn_output = launcher._collect_rank_zero_results(trainer, {})
|
||||
|
||||
model.state_dict.assert_called_once()
|
||||
is_fitting = trainer_fn == TrainerFn.FITTING
|
||||
if strategy.local_rank == 0:
|
||||
# on local rank 0 (each node), we expect a temp checkpoint (when fitting)
|
||||
assert not is_fitting or spawn_output.weights_path.endswith(".temp.ckpt")
|
||||
assert not is_fitting or os.path.isfile(spawn_output.weights_path)
|
||||
assert is_fitting or spawn_output.weights_path is None
|
||||
else:
|
||||
# all other ranks don't have outputs (rank 0 needs to handle the output)
|
||||
assert spawn_output is None
|
||||
|
|
|
@ -11,8 +11,8 @@
|
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import os
|
||||
from datetime import timedelta
|
||||
from pathlib import Path
|
||||
from unittest import mock
|
||||
from unittest.mock import Mock
|
||||
|
||||
|
@ -135,23 +135,19 @@ def test_ddp_spawn_transfer_weights(tmpdir, trainer_fn):
|
|||
trainer = Trainer(default_root_dir=tmpdir, strategy=strategy)
|
||||
trainer.strategy.connect(model)
|
||||
trainer.state.fn = trainer_fn # pretend we are in a particular trainer state
|
||||
temp_file = Path(tmpdir, ".temp.ckpt")
|
||||
|
||||
assert not temp_file.exists()
|
||||
spawn_output = strategy._launcher._collect_rank_zero_results(trainer, {})
|
||||
|
||||
model.state_dict.assert_called_once()
|
||||
if trainer_fn == TrainerFn.FITTING:
|
||||
assert spawn_output.weights_path == str(temp_file)
|
||||
assert temp_file.exists()
|
||||
assert spawn_output.weights_path.endswith(".temp.ckpt")
|
||||
assert os.path.isfile(spawn_output.weights_path)
|
||||
else:
|
||||
assert spawn_output.weights_path is None
|
||||
assert not temp_file.exists()
|
||||
|
||||
# <-- here would normally be the multiprocessing boundary
|
||||
strategy._launcher._recover_results_in_main_process(spawn_output, trainer)
|
||||
assert model.load_state_dict.call_count == int(spawn_output.weights_path is not None)
|
||||
assert not temp_file.exists()
|
||||
|
||||
|
||||
@mock.patch("torch.distributed.init_process_group")
|
||||
|
|
Loading…
Reference in New Issue