tests for legacy checkpoints (#5223)

* wip

* generate

* clean

* tests

* copy

* download

* download

* download

* download

* download

* download

* download

* download

* download

* download

* download

* flake8

* extend

* aws

* extension

* pull

* pull

* pull

* pull

* pull

* pull

* pull

* try

* try

* try

* got it

* Apply suggestions from code review
This commit is contained in:
Jirka Borovec 2021-01-08 16:36:49 +01:00 committed by GitHub
parent 4c6f36e6e1
commit 72525f0a83
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
16 changed files with 286 additions and 7 deletions

View File

@ -39,6 +39,14 @@ steps:
# when Image has defined CUDa version we can switch to this package spec "nvidia-dali-cuda${CUDA_VERSION%%.*}0"
- pip install --extra-index-url https://developer.download.nvidia.com/compute/redist nvidia-dali-cuda100 --upgrade-strategy only-if-needed
- pip list
# todo: remove unzip install after new nigtly docker is created
- apt-get update -qq
- apt-get install -y --no-install-recommends unzip
# get legacy checkpoints
- wget https://pl-public-data.s3.amazonaws.com/legacy/checkpoints.zip -P legacy/
- unzip -o legacy/checkpoints.zip -d legacy/
- ls -l legacy/checkpoints/
# testing...
- python -m coverage run --source pytorch_lightning -m pytest pytorch_lightning tests -v --durations=25 # --flake8
# Running special tests
- sh tests/special_tests.sh

View File

@ -34,10 +34,21 @@ jobs:
# todo this probably does not work with docker images, rather cache dockers
uses: actions/cache@v2
with:
path: Datasets # This path is specific to Ubuntu
# Look to see if there is a cache hit for the corresponding requirements file
path: Datasets
key: pl-dataset
- name: Pull checkpoints from S3
# todo: consider adding coma caching, but ATM all models have less then 100KB
run: |
# todo: remove unzip install after new nigtly docker is created
apt-get update -qq
apt-get install -y --no-install-recommends unzip
# enter legacy and update checkpoints from S3
cd legacy
curl https://pl-public-data.s3.amazonaws.com/legacy/checkpoints.zip --output checkpoints.zip
unzip -o checkpoints.zip
ls -l checkpoints/
- name: Tests
run: |
# NOTE: run coverage on tests does not propagare faler status for Win, https://github.com/nedbat/coveragepy/issues/1003

View File

@ -104,6 +104,16 @@ jobs:
restore-keys: |
${{ runner.os }}-pip-py${{ matrix.python-version }}-${{ matrix.requires }}-
- name: Pull checkpoints from S3
# todo: consider adding some caching, but ATM all models have less then 100KB
run: |
cd legacy
# wget is simpler but does not work on Windows
python -c "from urllib.request import urlretrieve ; urlretrieve('https://pl-public-data.s3.amazonaws.com/legacy/checkpoints.zip', 'checkpoints.zip')"
ls -l .
unzip -o checkpoints.zip
ls -l checkpoints/
- name: Install dependencies
env:
# MAKEFLAGS: "-j2"
@ -136,8 +146,7 @@ jobs:
- name: Cache datasets
uses: actions/cache@v2
with:
path: Datasets # This path is specific to Ubuntu
# Look to see if there is a cache hit for the corresponding requirements file
path: Datasets
key: pl-dataset
- name: Tests

View File

@ -35,7 +35,7 @@ jobs:
with:
time: 5m
# We do this, since failures on test.pypi aren't that bad
# We do this, since failures on test.pypi aren't that bad
- name: Publish to Test PyPI
uses: pypa/gh-action-pypi-publish@v1.4.1
with:

View File

@ -5,7 +5,7 @@ on: # Trigger the workflow on push or pull request, but only for the master bra
push:
branches: [master, "release/*"] # include release branches like release/1.0.x
release:
types: [created, "release/*"]
types: [created]
jobs:
@ -61,3 +61,51 @@ jobs:
with:
user: __token__
password: ${{ secrets.pypi_password }}
# Note: This uses an internal pip API and may not always work
# https://github.com/actions/cache/blob/master/examples.md#multiple-oss-in-a-workflow
- name: Cache pip
uses: actions/cache@v2
with:
path: ~/.cache/pip
key: ${{ runner.os }}-pip-${{ hashFiles('requirements.txt') }}
restore-keys: ${{ runner.os }}-pip-
- name: Install dependencies
run: |
pip install -r requirements.txt --find-links https://download.pytorch.org/whl/cpu/torch_stable.html --quiet
pip install virtualenv
pip install awscli
- name: Configure AWS credentials
uses: aws-actions/configure-aws-credentials@v1
with:
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
aws-secret-access-key: ${{ secrets.AWS_SECRET_KEY_ID }}
aws-region: us-east-1
- name: Pull files from S3
run: |
aws s3 cp --recursive s3://pl-public-data/legacy/checkpoints/ legacy/checkpoints/ # --acl public-read
ls -l legacy/checkpoints/
- name: Generate checkpoint
if: startsWith(github.event.ref, 'refs/tags') || github.event_name == 'release'
run: |
virtualenv vEnv --system-site-packages
source vEnv/bin/activate
pip install dist/*
pl_ver=$(python -c "import pytorch_lightning as pl ; print(pl.__version__)" 2>&1)
# generate checkpoint to this version
bash legacy/generate_checkpoints.sh $pl_ver
deactivate
rm -rf vEnv
- name: Push files to S3
run: |
aws s3 sync legacy/checkpoints/ s3://pl-public-data/legacy/checkpoints/
cd legacy
zip -r checkpoints.zip checkpoints
aws s3 cp checkpoints.zip s3://pl-public-data/legacy/ --acl public-read

4
.gitignore vendored
View File

@ -27,6 +27,7 @@ timit_data/
# C extensions
*.so
# PyCharm
.idea/
# Distribution / packaging
@ -126,11 +127,14 @@ ENV/
# mypy
.mypy_cache/
# pytest
.pytest_cache/
# data
.data/
Datasets/
mnist/
legacy/checkpoints/
# pl tests
ml-runs/

View File

@ -69,3 +69,4 @@ prune temp*
prune test*
prune benchmark*
prune dockers
prune legacy

View File

@ -40,7 +40,9 @@ RUN apt-get update -qq && \
build-essential \
cmake \
git \
wget \
curl \
unzip \
ca-certificates \
&& \

View File

@ -45,6 +45,8 @@ RUN apt-get update -qq && \
cmake \
git \
wget \
curl \
unzip \
ca-certificates \
software-properties-common \
&& \

View File

@ -23,6 +23,12 @@ MAINTAINER PyTorchLightning <https://github.com/PyTorchLightning>
COPY ./ ./pytorch-lightning/
# Pull the legacy checkpoints
RUN cd pytorch-lightning && \
wget https://pl-public-data.s3.amazonaws.com/legacy/checkpoints.zip -P legacy/ && \
unzip -o legacy/checkpoints.zip -d legacy/ && \
ls -l legacy/checkpoints/
# If using this image for tests, intall more dependencies and don"t delete the source code where the tests live.
RUN \
# Install pytorch-lightning at the current PR, plus dependencies.

View File

View File

@ -0,0 +1,40 @@
#!/bin/bash
# Sample call:
# bash generate_checkpoints.sh 1.0.2 1.0.3 1.0.4
LEGACY_PATH="$( cd "$(dirname "$0")" >/dev/null 2>&1 ; pwd -P )"
echo $LEGACY_PATH
# install some PT version here so it does not need to reinstalled for each env
pip install virtualenv "torch==1.5" --quiet --no-cache-dir
ENV_PATH="$LEGACY_PATH/vEnv"
# iterate over all arguments assuming that each argument is version
for ver in "$@"
do
echo "processing version: $ver"
# mkdir "$LEGACY_PATH/$ver"
# create local env
echo $ENV_PATH
virtualenv $ENV_PATH --system-site-packages
# activate and install PL version
source "$ENV_PATH/bin/activate"
pip install "pytorch_lightning==$ver" --quiet -U --no-cache-dir
python --version
pip --version
pip list | grep torch
python "$LEGACY_PATH/zero_training.py"
cp "$LEGACY_PATH/zero_training.py" ${LEGACY_PATH}/checkpoints/${ver}
mv ${LEGACY_PATH}/checkpoints/${ver}/lightning_logs/version_0/checkpoints/*.ckpt ${LEGACY_PATH}/checkpoints/${ver}/
rm -rf ${LEGACY_PATH}/checkpoints/${ver}/lightning_logs
deactivate
# clear env
rm -rf $ENV_PATH
done

92
legacy/zero_training.py Normal file
View File

@ -0,0 +1,92 @@
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import torch
from torch.utils.data import Dataset
import pytorch_lightning as pl
PATH_LEGACY = os.path.dirname(__file__)
class RandomDataset(Dataset):
def __init__(self, size, length: int = 100):
self.len = length
self.data = torch.randn(length, size)
def __getitem__(self, index):
return self.data[index]
def __len__(self):
return self.len
class DummyModel(pl.LightningModule):
def __init__(self):
super().__init__()
self.layer = torch.nn.Linear(32, 2)
def forward(self, x):
return self.layer(x)
def _loss(self, batch, prediction):
# An arbitrary loss to have a loss that updates the model weights during `Trainer.fit` calls
return torch.nn.functional.mse_loss(prediction, torch.ones_like(prediction))
def _step(self, batch, batch_idx):
output = self.layer(batch)
loss = self._loss(batch, output)
return loss
def training_step(self, batch, batch_idx):
return self._step(batch, batch_idx)
def validation_step(self, batch, batch_idx):
self._step(batch, batch_idx)
def test_step(self, batch, batch_idx):
self._step(batch, batch_idx)
def configure_optimizers(self):
optimizer = torch.optim.SGD(self.layer.parameters(), lr=0.1)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1)
return [optimizer], [lr_scheduler]
def train_dataloader(self):
return torch.utils.data.DataLoader(RandomDataset(32, 64))
def val_dataloader(self):
return torch.utils.data.DataLoader(RandomDataset(32, 64))
def test_dataloader(self):
return torch.utils.data.DataLoader(RandomDataset(32, 64))
def main_train(dir_path, max_epochs: int = 5):
trainer = pl.Trainer(
default_root_dir=dir_path,
checkpoint_callback=True,
max_epochs=max_epochs,
)
model = DummyModel()
trainer.fit(model)
if __name__ == '__main__':
path_dir = os.path.join(PATH_LEGACY, 'checkpoints', str(pl.__version__))
main_train(path_dir)

View File

@ -69,7 +69,7 @@ setup(
url=pytorch_lightning.__homepage__,
download_url='https://github.com/PyTorchLightning/pytorch-lightning',
license=pytorch_lightning.__license__,
packages=find_packages(exclude=['tests', 'tests/*', 'benchmarks']),
packages=find_packages(exclude=['tests', 'tests/*', 'benchmarks', 'legacy', 'legacy/*']),
long_description=_load_long_description(PATH_ROOT),
long_description_content_type='text/markdown',

View File

@ -18,6 +18,8 @@ import numpy as np
TEST_ROOT = os.path.dirname(__file__)
PROJECT_ROOT = os.path.dirname(TEST_ROOT)
TEMP_PATH = os.path.join(PROJECT_ROOT, 'test_temp')
DATASETS_PATH = os.path.join(PROJECT_ROOT, 'Datasets')
LEGACY_PATH = os.path.join(PROJECT_ROOT, 'legacy')
# todo: this setting `PYTHONPATH` may not be used by other evns like Conda for import packages
if PROJECT_ROOT not in os.getenv('PYTHONPATH', ""):

View File

@ -0,0 +1,54 @@
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import glob
import os
import sys
import pytest
from pytorch_lightning import Trainer
from tests import LEGACY_PATH
LEGACY_CHECKPOINTS_PATH = os.path.join(LEGACY_PATH, 'checkpoints')
CHECKPOINT_EXTENSION = ".ckpt"
# todo: add more legacy checkpoints :]
@pytest.mark.parametrize("pl_version", [
"0.10.0", "1.0.0", "1.0.1", "1.0.2", "1.0.3", "1.0.4", "1.0.5", "1.0.6", "1.0.7", "1.0.8"
])
def test_resume_legacy_checkpoints(tmpdir, pl_version):
path_dir = os.path.join(LEGACY_CHECKPOINTS_PATH, pl_version)
# todo: make this as mock, so it is cleaner...
orig_sys_paths = list(sys.path)
sys.path.insert(0, path_dir)
from zero_training import DummyModel
path_ckpts = sorted(glob.glob(os.path.join(path_dir, f'*{CHECKPOINT_EXTENSION}')))
assert path_ckpts, 'No checkpoints found in folder "%s"' % path_dir
path_ckpt = path_ckpts[-1]
model = DummyModel.load_from_checkpoint(path_ckpt)
trainer = Trainer(default_root_dir=tmpdir, max_epochs=6)
result = trainer.fit(model)
assert result
# todo
# model = DummyModel()
# trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, resume_from_checkpoint=path_ckpt)
# result = trainer.fit(model)
# assert result
sys.path = orig_sys_paths