test selecting the correct backend. temp backends while slurm and TE are decoupled (#3848)

* test selecting the correct backend. tem backends while slurm and TE are decoupled

* test selecting the correct backend. tem backends while slurm and TE are decoupled
This commit is contained in:
William Falcon 2020-10-04 15:44:50 -04:00 committed by GitHub
parent 1aa9d39506
commit 70e792344a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 583 additions and 0 deletions

View File

@ -9,3 +9,5 @@ from pytorch_lightning.accelerators.tpu_backend import TPUBackend
from pytorch_lightning.accelerators.horovod_backend import HorovodBackend
from pytorch_lightning.accelerators.ddp_slurm_backend import DDPSLURMBackend
from pytorch_lightning.accelerators.ddp_torchelastic_backend import DDPTorchElasticBackend
from pytorch_lightning.accelerators.ddp_cpu_torchelastic_backend import DDPCPUTorchElasticBackend
from pytorch_lightning.accelerators.ddp_cpu_slurm_backend import DDPCPUSLURMBackend

View File

@ -158,6 +158,9 @@ class AcceleratorConnector:
use_ddp_spawn = self.trainer.use_ddp and self.trainer.distributed_backend == "ddp_spawn"
use_ddp_cpu_spawn = self.trainer.use_ddp and self.trainer.distributed_backend == "ddp_cpu"
use_ddp_cpu_torch_elastic = use_ddp_cpu_spawn and self._is_using_torchelastic()
use_ddp_cpu_slurm = use_ddp_cpu_spawn and self.trainer.is_slurm_managing_tasks
# ddp script mode uses the same flags as TE
# TODO: decouple from TE
if os.environ.get('PL_DDP_PID', False):
@ -167,9 +170,15 @@ class AcceleratorConnector:
if self.trainer.use_ddp2:
accelerator_backend = accelerators.DDP2Backend(self.trainer)
elif use_ddp_cpu_slurm:
accelerator_backend = accelerators.DDPCPUSLURMBackend(self.trainer)
elif use_slurm_ddp:
accelerator_backend = accelerators.DDPSLURMBackend(self.trainer)
elif use_ddp_cpu_torch_elastic:
accelerator_backend = accelerators.DDPCPUTorchElasticBackend(self.trainer)
elif use_torchelastic_ddp:
accelerator_backend = accelerators.DDPTorchElasticBackend(self.trainer)

View File

@ -29,6 +29,7 @@ from pytorch_lightning.utilities.distributed import rank_zero_only
from pytorch_lightning.utilities import AMPType
from pytorch_lightning.utilities.seed import seed_everything
from pytorch_lightning.distributed.dist import LightningDistributed
from pytorch_lightning.utilities.exceptions import MisconfigurationException
try:
@ -93,6 +94,9 @@ class DDPBackend(Accelerator):
# when the trainer script was called the device has already been scoped by the time
# code reaches this point. so, to call the scripts, we need to leave cuda visible devices alone
# but forward the GPUs selected via environment variables
if self.trainer.data_parallel_device_ids is None:
raise MisconfigurationException('you selected (distribute_backend = ddp) but did not set Trainer(gpus=?)')
os.environ['PL_TRAINER_GPUS'] = ','.join([str(i) for i in self.trainer.data_parallel_device_ids])
os.environ['PL_IN_DDP_SUBPROCESS'] = '1'

View File

@ -0,0 +1,173 @@
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License
import os
import torch
import torch.distributed as torch_distrib
import torch.distributed as dist
from pytorch_lightning.accelerators.base_backend import Accelerator
from pytorch_lightning import _logger as log
from pytorch_lightning.utilities import AMPType
from pytorch_lightning.utilities.distributed import rank_zero_only
from pytorch_lightning.utilities.seed import seed_everything
from pytorch_lightning.distributed.dist import LightningDistributed
try:
from hydra.utils import to_absolute_path, get_original_cwd
from hydra.core.hydra_config import HydraConfig
except ImportError:
HYDRA_AVAILABLE = False
else:
HYDRA_AVAILABLE = True
# -------------------------------------------
# !!!!!!!!!!!!!! NOTE !!!!!!!!!!!!!!!!!!!!!!
# TEMP CLASS WHILE WE DECOUPLE TE FROM DDP
# !!!!!!!!!!!!!! NOTE !!!!!!!!!!!!!!!!!!!!!!
# -------------------------------------------
class DDPCPUSLURMBackend(Accelerator):
def __init__(self, trainer, cluster_environment=None):
super().__init__(trainer, cluster_environment)
self.task_idx = None
self._has_spawned_children = False
self.dist = LightningDistributed()
def setup(self, model):
self.trainer.model = model
self.task_idx = int(os.environ['SLURM_LOCALID'])
def train(self):
model = self.trainer.model
self.ddp_train(process_idx=self.task_idx, model=model)
def set_world_ranks(self, process_idx):
self.trainer.local_rank = process_idx
self.trainer.global_rank = self.trainer.node_rank * self.trainer.num_processes + process_idx
self.trainer.world_size = self.trainer.num_nodes * self.trainer.num_processes
def model_to_device(self, model, process_idx):
model.cpu()
def get_device_ids(self):
device_ids = None
return device_ids
def training_step(self, args):
if self.trainer.amp_backend == AMPType.NATIVE:
with torch.cuda.amp.autocast():
output = self.trainer.model(*args)
else:
output = self.trainer.model(*args)
return output
def validation_step(self, args):
output = self.training_step(args)
return output
def test_step(self, args):
output = self.training_step(args)
return output
def barrier(self, name: str = None):
if torch_distrib.is_initialized():
torch_distrib.barrier()
def early_stopping_should_stop(self, pl_module):
stop = torch.tensor(int(self.trainer.should_stop), device=pl_module.device)
dist.all_reduce(stop, op=dist.reduce_op.SUM)
dist.barrier()
should_stop = stop == self.trainer.world_size
return should_stop
def broadcast(self, obj, src=0):
return self.dist.broadcast(obj)
def ddp_train(self, process_idx, model):
"""
Entry point for ddp
Args:
process_idx:
mp_queue: multiprocessing queue
model:
Returns:
"""
# determine which process we are and world size
self.set_world_ranks(process_idx)
# toggle prog bar
if self.trainer.global_rank == 0 and self.trainer.progress_bar_callback is not None:
self.trainer.progress_bar_callback.disable()
# set warning rank
rank_zero_only.rank = self.trainer.global_rank
# set up server using proc 0's ip address
# try to init for 20 times at max in case ports are taken
# where to store ip_table
model.trainer = self.trainer
self.init_ddp_connection(
self.trainer.global_rank,
self.trainer.world_size,
self.trainer.is_slurm_managing_tasks
)
# call setup after the ddp process has connected
self.trainer.call_setup_hook(model)
# on world_size=0 let everyone know training is starting
if self.trainer.is_global_zero and not torch.distributed.is_initialized():
log.info('-' * 100)
log.info(f'distributed_backend={self.trainer.distributed_backend} (TORCH_ELASTIC)')
log.info(f'All DDP processes registered. Starting ddp with {self.trainer.world_size} processes')
log.info('-' * 100)
# call sync_bn before .cuda(), configure_apex and configure_ddp
if self.trainer.sync_batchnorm:
model = model.configure_sync_batchnorm(model)
# move the model to the correct device
self.model_to_device(model, process_idx)
# CHOOSE OPTIMIZER
# allow for lr schedulers as well
self.setup_optimizers(model)
# set model properties before going into wrapper
self.trainer.model_connector.copy_trainer_model_properties(model)
# 16-bit
model = self.trainer.precision_connector.connect(model)
# device ids change depending on the DDP setup
device_ids = self.get_device_ids()
# allow user to configure ddp
model = model.configure_ddp(model, device_ids)
# set up training routine
self.trainer.train_loop.setup_training(model)
# train or test
results = self.train_or_test()
# clean up memory
torch.cuda.empty_cache()
return results

View File

@ -0,0 +1,173 @@
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License
import os
import torch
import torch.distributed as torch_distrib
import torch.distributed as dist
from pytorch_lightning.accelerators.base_backend import Accelerator
from pytorch_lightning import _logger as log
from pytorch_lightning.utilities import AMPType
from pytorch_lightning.utilities.distributed import rank_zero_only
from pytorch_lightning.utilities.seed import seed_everything
from pytorch_lightning.distributed.dist import LightningDistributed
try:
from hydra.utils import to_absolute_path, get_original_cwd
from hydra.core.hydra_config import HydraConfig
except ImportError:
HYDRA_AVAILABLE = False
else:
HYDRA_AVAILABLE = True
# -------------------------------------------
# !!!!!!!!!!!!!! NOTE !!!!!!!!!!!!!!!!!!!!!!
# TEMP CLASS WHILE WE DECOUPLE TE FROM DDP
# !!!!!!!!!!!!!! NOTE !!!!!!!!!!!!!!!!!!!!!!
# -------------------------------------------
class DDPCPUTorchElasticBackend(Accelerator):
def __init__(self, trainer, cluster_environment=None):
super().__init__(trainer, cluster_environment)
self.task_idx = None
self._has_spawned_children = False
self.dist = LightningDistributed()
def setup(self, model):
self.trainer.model = model
self.task_idx = int(os.environ['LOCAL_RANK'])
def train(self):
model = self.trainer.model
self.ddp_train(process_idx=self.task_idx, model=model)
def set_world_ranks(self, process_idx):
self.trainer.local_rank = process_idx
self.trainer.global_rank = self.trainer.node_rank * self.trainer.num_processes + process_idx
self.trainer.world_size = self.trainer.num_nodes * self.trainer.num_processes
def model_to_device(self, model, process_idx):
model.cpu()
def get_device_ids(self):
device_ids = None
return device_ids
def training_step(self, args):
if self.trainer.amp_backend == AMPType.NATIVE:
with torch.cuda.amp.autocast():
output = self.trainer.model(*args)
else:
output = self.trainer.model(*args)
return output
def validation_step(self, args):
output = self.training_step(args)
return output
def test_step(self, args):
output = self.training_step(args)
return output
def barrier(self, name: str = None):
if torch_distrib.is_initialized():
torch_distrib.barrier()
def early_stopping_should_stop(self, pl_module):
stop = torch.tensor(int(self.trainer.should_stop), device=pl_module.device)
dist.all_reduce(stop, op=dist.reduce_op.SUM)
dist.barrier()
should_stop = stop == self.trainer.world_size
return should_stop
def broadcast(self, obj, src=0):
return self.dist.broadcast(obj)
def ddp_train(self, process_idx, model):
"""
Entry point for ddp
Args:
process_idx:
mp_queue: multiprocessing queue
model:
Returns:
"""
# determine which process we are and world size
self.set_world_ranks(process_idx)
# toggle prog bar
if self.trainer.global_rank == 0 and self.trainer.progress_bar_callback is not None:
self.trainer.progress_bar_callback.disable()
# set warning rank
rank_zero_only.rank = self.trainer.global_rank
# set up server using proc 0's ip address
# try to init for 20 times at max in case ports are taken
# where to store ip_table
model.trainer = self.trainer
self.init_ddp_connection(
self.trainer.global_rank,
self.trainer.world_size,
self.trainer.is_slurm_managing_tasks
)
# call setup after the ddp process has connected
self.trainer.call_setup_hook(model)
# on world_size=0 let everyone know training is starting
if self.trainer.is_global_zero and not torch.distributed.is_initialized():
log.info('-' * 100)
log.info(f'distributed_backend={self.trainer.distributed_backend} (TORCH_ELASTIC)')
log.info(f'All DDP processes registered. Starting ddp with {self.trainer.world_size} processes')
log.info('-' * 100)
# call sync_bn before .cuda(), configure_apex and configure_ddp
if self.trainer.sync_batchnorm:
model = model.configure_sync_batchnorm(model)
# move the model to the correct device
self.model_to_device(model, process_idx)
# CHOOSE OPTIMIZER
# allow for lr schedulers as well
self.setup_optimizers(model)
# set model properties before going into wrapper
self.trainer.model_connector.copy_trainer_model_properties(model)
# 16-bit
model = self.trainer.precision_connector.connect(model)
# device ids change depending on the DDP setup
device_ids = self.get_device_ids()
# allow user to configure ddp
model = model.configure_ddp(model, device_ids)
# set up training routine
self.trainer.train_loop.setup_training(model)
# train or test
results = self.train_or_test()
# clean up memory
torch.cuda.empty_cache()
return results

View File

@ -29,6 +29,10 @@ class SLURMConnector:
self.trainer.num_slurm_tasks = int(os.environ['SLURM_NTASKS'])
self.trainer.is_slurm_managing_tasks = self.trainer.num_slurm_tasks == self.trainer.num_requested_gpus
# enable slurm cpu
if self.trainer.num_requested_gpus == 0:
self.trainer.is_slurm_managing_tasks = self.trainer.num_slurm_tasks == self.trainer.num_processes
# in interactive mode we don't manage tasks
job_name = os.environ['SLURM_JOB_NAME']
if job_name == 'bash':

View File

@ -0,0 +1,218 @@
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License
import pytest
import os
from tests.base.boring_model import BoringModel
from pytorch_lightning.callbacks import Callback
from pytorch_lightning import accelerators, Trainer
from unittest import mock
def test_accelerator_choice_cpu(tmpdir):
class CB(Callback):
def on_fit_start(self, trainer, pl_module):
assert isinstance(trainer.accelerator_backend, accelerators.CPUBackend)
model = BoringModel()
trainer = Trainer(
fast_dev_run=True,
callbacks=[CB()]
)
trainer.fit(model)
def test_accelerator_choice_ddp_cpu(tmpdir):
class CB(Callback):
def on_fit_start(self, trainer, pl_module):
assert isinstance(trainer.accelerator_backend, accelerators.DDPCPUSpawnBackend)
raise SystemExit()
model = BoringModel()
trainer = Trainer(
fast_dev_run=True,
distributed_backend='ddp_cpu',
callbacks=[CB()]
)
with pytest.raises(SystemExit):
trainer.fit(model)
@mock.patch.dict(os.environ, {"CUDA_VISIBLE_DEVICES": "0,1"})
@mock.patch('torch.cuda.device_count', return_value=2)
def test_accelerator_choice_ddp(tmpdir):
class CB(Callback):
def on_fit_start(self, trainer, pl_module):
assert isinstance(trainer.accelerator_backend, accelerators.DDPBackend)
raise SystemExit()
model = BoringModel()
trainer = Trainer(
fast_dev_run=True,
distributed_backend='ddp',
gpus=1,
callbacks=[CB()]
)
with pytest.raises(SystemExit):
trainer.fit(model)
@mock.patch.dict(os.environ, {"CUDA_VISIBLE_DEVICES": "0,1"})
@mock.patch('torch.cuda.device_count', return_value=2)
def test_accelerator_choice_ddp_spawn(tmpdir):
class CB(Callback):
def on_fit_start(self, trainer, pl_module):
assert isinstance(trainer.accelerator_backend, accelerators.DDPSpawnBackend)
raise SystemExit()
model = BoringModel()
trainer = Trainer(
fast_dev_run=True,
distributed_backend='ddp_spawn',
gpus=1,
callbacks=[CB()]
)
with pytest.raises(SystemExit):
trainer.fit(model)
@mock.patch.dict(os.environ, {
"CUDA_VISIBLE_DEVICES": "0,1",
"SLURM_NTASKS": "2",
"SLURM_JOB_NAME": "SOME_NAME",
"SLURM_NODEID": "0",
"SLURM_LOCALID": "0"
})
@mock.patch('torch.cuda.device_count', return_value=2)
def test_accelerator_choice_ddp_slurm(tmpdir):
class CB(Callback):
def on_fit_start(self, trainer, pl_module):
assert isinstance(trainer.accelerator_backend, accelerators.DDPSLURMBackend)
raise SystemExit()
model = BoringModel()
trainer = Trainer(
fast_dev_run=True,
distributed_backend='ddp',
gpus=2,
callbacks=[CB()]
)
with pytest.raises(SystemExit):
trainer.fit(model)
@mock.patch.dict(os.environ, {
"CUDA_VISIBLE_DEVICES": "0,1",
"SLURM_NTASKS": "2",
"SLURM_JOB_NAME": "SOME_NAME",
"SLURM_NODEID": "0",
"LOCAL_RANK": "0",
"SLURM_LOCALID": "0"
})
@mock.patch('torch.cuda.device_count', return_value=2)
def test_accelerator_choice_ddp2_slurm(tmpdir):
class CB(Callback):
def on_fit_start(self, trainer, pl_module):
assert isinstance(trainer.accelerator_backend, accelerators.DDP2Backend)
raise SystemExit()
model = BoringModel()
trainer = Trainer(
fast_dev_run=True,
distributed_backend='ddp2',
gpus=2,
callbacks=[CB()]
)
with pytest.raises(SystemExit):
trainer.fit(model)
@mock.patch.dict(os.environ, {
"CUDA_VISIBLE_DEVICES": "0,1",
"WORLD_SIZE": "2",
"LOCAL_RANK": "0",
"NODE_RANK": "0"
})
@mock.patch('torch.cuda.device_count', return_value=2)
def test_accelerator_choice_ddp_te(tmpdir):
class CB(Callback):
def on_fit_start(self, trainer, pl_module):
assert isinstance(trainer.accelerator_backend, accelerators.DDPTorchElasticBackend)
raise SystemExit()
model = BoringModel()
trainer = Trainer(
fast_dev_run=True,
distributed_backend='ddp',
gpus=2,
callbacks=[CB()]
)
with pytest.raises(SystemExit):
trainer.fit(model)
@mock.patch.dict(os.environ, {
"WORLD_SIZE": "1",
"LOCAL_RANK": "0",
"NODE_RANK": "0"
})
@mock.patch('torch.cuda.device_count', return_value=0)
def test_accelerator_choice_ddp_cpu_te(tmpdir):
class CB(Callback):
def on_fit_start(self, trainer, pl_module):
assert isinstance(trainer.accelerator_backend, accelerators.DDPCPUTorchElasticBackend)
raise SystemExit()
model = BoringModel()
trainer = Trainer(
fast_dev_run=True,
distributed_backend='ddp_cpu',
num_processes=1,
callbacks=[CB()]
)
with pytest.raises(SystemExit):
trainer.fit(model)
@mock.patch.dict(os.environ, {
"SLURM_NTASKS": "1",
"SLURM_JOB_NAME": "SOME_NAME",
"SLURM_NODEID": "0",
"LOCAL_RANK": "0",
"SLURM_LOCALID": "0"
})
@mock.patch('torch.cuda.device_count', return_value=0)
def test_accelerator_choice_ddp_cpu_slurm(tmpdir):
class CB(Callback):
def on_fit_start(self, trainer, pl_module):
assert isinstance(trainer.accelerator_backend, accelerators.DDPCPUSLURMBackend)
raise SystemExit()
model = BoringModel()
trainer = Trainer(
fast_dev_run=True,
distributed_backend='ddp_cpu',
num_processes=1,
callbacks=[CB()]
)
with pytest.raises(SystemExit):
trainer.fit(model)