diff --git a/docs/LightningModule/RequiredTrainerInterface.md b/docs/LightningModule/RequiredTrainerInterface.md index 3cf630db22..a849988f36 100644 --- a/docs/LightningModule/RequiredTrainerInterface.md +++ b/docs/LightningModule/RequiredTrainerInterface.md @@ -129,7 +129,8 @@ Dictionary or OrderedDict | key | value | is required | |---|---|---| | loss | tensor scalar | Y | -| progress | Dict for progress bar display. Must have only tensors | N | +| progress_bar | Dict for progress bar display. Must have only tensors | N | +| log | Dict of metrics to add to logger. Must have only tensors (no images, etc) | N | **Example** @@ -144,7 +145,8 @@ def training_step(self, batch, batch_nb): output = { 'loss': loss, # required - 'progress': {'training_loss': loss} # optional (MUST ALL BE TENSORS) + 'progress_bar': {'training_loss': loss}, # optional (MUST ALL BE TENSORS) + 'log': {'training_loss': loss} # optional (MUST ALL BE TENSORS) } # return a dict @@ -161,6 +163,9 @@ def training_step(self, batch, batch_nb, optimizer_idx): # do training_step with decoder ``` +You can also return a -1 instead of a dict to stop the current loop. This is useful if you want to +break out of the current training epoch early. + --- ### train_dataloader @@ -263,7 +268,7 @@ The dict you return here will be available in the `validation_end` method. | Return | description | optional | |---|---|---| -| dict | Dict or OrderedDict with metrics to display in progress bar. All keys must be tensors. | Y | +| dict | Dict or OrderedDict - passed to the validation_end step | N | **Example** @@ -327,9 +332,12 @@ The outputs here are strictly for the progress bar. If you don't need to display **Return** -| Return | description | optional | -|---|---|---| -| dict | Dict of OrderedDict with metrics to display in progress bar | Y | +Dictionary or OrderedDict + +| key | value | is required | +|---|---|---| +| progress_bar | Dict for progress bar display. Must have only tensors | N | +| log | Dict of metrics to add to logger. Must have only tensors (no images, etc) | N | **Example** @@ -351,7 +359,13 @@ def validation_end(self, outputs): val_loss_mean /= len(outputs) val_acc_mean /= len(outputs) tqdm_dict = {'val_loss': val_loss_mean.item(), 'val_acc': val_acc_mean.item()} - return tqdm_dict + + # show val_loss and val_acc in progress bar but only log val_loss + results = { + 'progress_bar': tqdm_dict, + 'log': {'val_loss': val_loss_mean.item()} + } + return results ``` With multiple dataloaders, `outputs` will be a list of lists. The outer list contains @@ -377,7 +391,13 @@ def validation_end(self, outputs): val_loss_mean /= i val_acc_mean /= i tqdm_dict = {'val_loss': val_loss_mean.item(), 'val_acc': val_acc_mean.item()} - return tqdm_dict + + # show val_loss and val_acc in progress bar but only log val_loss + results = { + 'progress_bar': tqdm_dict, + 'log': {'val_loss': val_loss_mean.item()} + } + return results ``` ### test_step @@ -490,7 +510,13 @@ def test_end(self, outputs): test_loss_mean /= len(outputs) test_acc_mean /= len(outputs) tqdm_dict = {'test_loss': test_loss_mean.item(), 'test_acc': test_acc_mean.item()} - return tqdm_dict + + # show test_loss and test_acc in progress bar but only log test_loss + results = { + 'progress_bar': tqdm_dict, + 'log': {'test_loss': val_loss_mean.item()} + } + return results ``` With multiple dataloaders, `outputs` will be a list of lists. The outer list contains @@ -516,7 +542,13 @@ def test_end(self, outputs): test_loss_mean /= i test_acc_mean /= i tqdm_dict = {'test_loss': test_loss_mean.item(), 'test_acc': test_acc_mean.item()} - return tqdm_dict + + # show test_loss and test_acc in progress bar but only log test_loss + results = { + 'progress_bar': tqdm_dict, + 'log': {'test_loss': val_loss_mean.item()} + } + return results ``` --- diff --git a/docs/Trainer/hooks.md b/docs/Trainer/hooks.md index d05eb630b6..726b5f5aa4 100644 --- a/docs/Trainer/hooks.md +++ b/docs/Trainer/hooks.md @@ -58,16 +58,6 @@ def on_post_performance_check(self): ``` --- -#### on_training_metrics -Called in the training loop, right before metrics are logged. -Although you can log at any time by using self.experiment, you can use -this callback to modify what will be logged. -```python -def on_training_metrics(self, metrics): - # do something before validation end -``` - ---- #### optimizer_step Calls .step() and .zero_grad for each optimizer. You can override this method to adjust how you do the optimizer step for each optimizer diff --git a/examples/new_project_templates/lightning_module_template.py b/examples/new_project_templates/lightning_module_template.py index bfa65e5cf7..7188d804b9 100644 --- a/examples/new_project_templates/lightning_module_template.py +++ b/examples/new_project_templates/lightning_module_template.py @@ -168,7 +168,8 @@ class LightningTemplateModel(LightningModule): val_loss_mean /= len(outputs) val_acc_mean /= len(outputs) tqdm_dict = {'val_loss': val_loss_mean, 'val_acc': val_acc_mean} - return tqdm_dict + result = {'progress_bar': tqdm_dict} + return result # --------------------- # TRAINING SETUP diff --git a/pytorch_lightning/root_module/hooks.py b/pytorch_lightning/root_module/hooks.py index 6820fd70b4..37d41eb5c5 100644 --- a/pytorch_lightning/root_module/hooks.py +++ b/pytorch_lightning/root_module/hooks.py @@ -28,9 +28,6 @@ class ModelHooks(torch.nn.Module): def on_post_performance_check(self): pass - def on_training_metrics(self, metrics): - pass - def on_before_zero_grad(self, optimizer): """ Called after optimizer.step() and before optimizer.zero_grad() diff --git a/pytorch_lightning/testing/lm_test_module_base.py b/pytorch_lightning/testing/lm_test_module_base.py index bd7d2f8761..d14cf534d1 100644 --- a/pytorch_lightning/testing/lm_test_module_base.py +++ b/pytorch_lightning/testing/lm_test_module_base.py @@ -104,8 +104,9 @@ class LightningTestModelBase(LightningModule): if self.trainer.batch_nb % 1 == 0: output = OrderedDict({ 'loss': loss_val, - 'progress': {'some_val': loss_val * loss_val} + 'progress_bar': {'some_val': loss_val * loss_val} }) + return output if self.trainer.batch_nb % 2 == 0: return loss_val diff --git a/pytorch_lightning/testing/lm_test_module_mixins.py b/pytorch_lightning/testing/lm_test_module_mixins.py index 3831300e24..feab206f02 100644 --- a/pytorch_lightning/testing/lm_test_module_mixins.py +++ b/pytorch_lightning/testing/lm_test_module_mixins.py @@ -105,7 +105,8 @@ class LightningValidationMixin(LightningValidationStepMixin): val_acc_mean /= len(outputs) tqdm_dict = {'val_loss': val_loss_mean.item(), 'val_acc': val_acc_mean.item()} - return tqdm_dict + results = {'progress_bar': tqdm_dict} + return results class LightningValidationStepMultipleDataloadersMixin: @@ -207,7 +208,8 @@ class LightningValidationMultipleDataloadersMixin(LightningValidationStepMultipl val_acc_mean /= i tqdm_dict = {'val_loss': val_loss_mean.item(), 'val_acc': val_acc_mean.item()} - return tqdm_dict + result = {'progress_bar': tqdm_dict} + return result class LightningTestStepMixin: @@ -291,7 +293,8 @@ class LightningTestMixin(LightningTestStepMixin): test_acc_mean /= len(outputs) tqdm_dict = {'test_loss': test_loss_mean.item(), 'test_acc': test_acc_mean.item()} - return tqdm_dict + result = {'progress_bar': tqdm_dict} + return result class LightningTestStepMultipleDataloadersMixin: @@ -384,4 +387,5 @@ class LightningTestMultipleDataloadersMixin(LightningTestStepMultipleDataloaders test_acc_mean /= i tqdm_dict = {'test_loss': test_loss_mean.item(), 'test_acc': test_acc_mean.item()} - return tqdm_dict + result = {'progress_bar': tqdm_dict} + return result diff --git a/pytorch_lightning/trainer/trainer.py b/pytorch_lightning/trainer/trainer.py index cb0e9b858c..034c2db50d 100644 --- a/pytorch_lightning/trainer/trainer.py +++ b/pytorch_lightning/trainer/trainer.py @@ -553,7 +553,6 @@ class Trainer(TrainerIO): :param model: PT model :param dataloaders: list of PT dataloaders :param max_batches: Scalar - :param dataloader_idx: :param test: boolean :return: """ @@ -582,7 +581,10 @@ class Trainer(TrainerIO): # ----------------- # RUN EVALUATION STEP # ----------------- - output = self.__evaluation_forward(model, batch, batch_idx, dataloader_idx, + output = self.__evaluation_forward(model, + batch, + batch_idx, + dataloader_idx, test) # track outputs for collation @@ -704,8 +706,6 @@ class Trainer(TrainerIO): task = int(os.environ['SLURM_LOCALID']) self.ddp_train(task, model) else: - nb_gpus = self.nb_requested_gpus - nb_tasks = self.nb_slurm_tasks mp.spawn(self.ddp_train, nprocs=self.num_gpus, args=(model, )) # 1 gpu or dp option triggers training using DP module @@ -1054,7 +1054,8 @@ class Trainer(TrainerIO): # --------------- # RUN TRAIN STEP # --------------- - batch_result, grad_norm_dic = self.__run_training_batch(batch, batch_nb) + output = self.__run_training_batch(batch, batch_nb) + batch_result, grad_norm_dic, batch_step_metrics = output early_stop_epoch = batch_result == -1 # --------------- @@ -1073,29 +1074,9 @@ class Trainer(TrainerIO): # when metrics should be logged if batch_nb % self.row_log_interval == 0 or early_stop_epoch: - # count items in memory - # nb_params, nb_tensors = count_mem_items() - model = self.__get_model() - metrics = self.__training_tqdm_dict - - # add gpu memory - if self.on_gpu and self.log_gpu_memory is not None: - mem_map = memory.get_memory_profile(mode=self.log_gpu_memory) - metrics.update(mem_map) - - # add norms - metrics.update(grad_norm_dic) - - if self.__is_function_implemented('on_training_metrics'): - model.on_training_metrics(metrics) - - # log metrics - scalar_metrics = self.__metrics_to_scalars( - metrics, blacklist=self.__log_vals_blacklist()) - if self.proc_rank == 0 and self.logger is not None: - self.logger.log_metrics(scalar_metrics, step_num=self.global_step) - self.logger.save() + # logs user requested information to logger + self.__log_metrics(batch_step_metrics, grad_norm_dic) # end epoch early if early_stop_epoch: @@ -1106,6 +1087,32 @@ class Trainer(TrainerIO): model = self.__get_model() model.on_epoch_end() + def __log_metrics(self, metrics, grad_norm_dic): + """ + Logs the metric dict passed in + :param metrics: + :param grad_norm_dic: + :return: + """ + # added metrics by Lightning for convenience + metrics['epoch'] = self.current_epoch + + # add gpu memory + if self.on_gpu and self.log_gpu_memory: + mem_map = memory.get_memory_profile() + metrics.update(mem_map) + + # add norms + metrics.update(grad_norm_dic) + + # turn all tensors to scalars + scalar_metrics = self.__metrics_to_scalars(metrics) + + # log actual metrics + if self.proc_rank == 0 and self.logger is not None: + self.logger.log_metrics(scalar_metrics, step_num=self.global_step) + self.logger.save() + def test(self, model=None): if model is not None: self.testing = True @@ -1113,7 +1120,7 @@ class Trainer(TrainerIO): else: self.__run_evaluation(test=True) - def __metrics_to_scalars(self, metrics, blacklist=set()): + def __metrics_to_scalars(self, metrics): new_metrics = {} for k, v in metrics.items(): if type(v) is torch.Tensor: @@ -1122,9 +1129,6 @@ class Trainer(TrainerIO): if type(v) is dict: v = self.__metrics_to_scalars(v) - if k not in blacklist: - new_metrics[k] = float(v) - return new_metrics def __log_vals_blacklist(self): @@ -1193,41 +1197,64 @@ class Trainer(TrainerIO): else: output = self.model.training_step(*args) - # --------------- - # TQDM metrics - # --------------- + # format and reduce outputs accordingly + loss, progress_bar_metrics, log_metrics = self.__process_output(output, train=True) + return loss, progress_bar_metrics, log_metrics + + def __process_output(self, output, train=False): + """ + Reduces output according to the training mode. + Separates loss from logging and tqdm metrics + :param output: + :return: + """ try: - progress_output = output['progress'] + progress_output = output['progress_bar'] # reduce progress metrics for tqdm when using dp - if self.use_dp or self.use_ddp2: + if train and self.use_dp or self.use_ddp2: nb_gpus = self.num_gpus progress_output = reduce_distributed_output(progress_output, nb_gpus) - model_specific_tqdm_metrics_dic = progress_output + progress_bar_metrics = progress_output except Exception: - model_specific_tqdm_metrics_dic = {} + progress_bar_metrics = {} + + # extract metrics to log to experiment + try: + log_output = output['log'] + + # reduce progress metrics for tqdm when using dp + if train and self.use_dp or self.use_ddp2: + nb_gpus = self.num_gpus + log_output = reduce_distributed_output(log_output, nb_gpus) + + log_metrics = log_output + except Exception: + log_metrics = {} # --------------- # EXTRACT LOSS # --------------- # if output dict doesn't have the keyword loss # then assume the output=loss if scalar - try: - loss = output['loss'] - except Exception: - if type(output) is torch.Tensor: - loss = output - else: - raise RuntimeError( - 'No `loss` value in the dictionary returned from `model.training_step()`.' - ) + loss = None + if train: + try: + loss = output['loss'] + except Exception: + if type(output) is torch.Tensor: + loss = output + else: + raise RuntimeError( + 'No `loss` value in the dictionary returned from `model.training_step()`.' + ) - # when using dp need to reduce the loss - if self.use_dp or self.use_ddp2: - loss = reduce_distributed_output(loss, self.num_gpus) + # when using dp need to reduce the loss + if self.use_dp or self.use_ddp2: + loss = reduce_distributed_output(loss, self.num_gpus) - return loss, model_specific_tqdm_metrics_dic + return loss, progress_bar_metrics, log_metrics def __clip_gradients(self): if self.gradient_clip_val > 0: @@ -1244,6 +1271,9 @@ class Trainer(TrainerIO): # track grad norms grad_norm_dic = {} + # track metrics to log + all_log_metrics = [] + if batch is None: return 0, grad_norm_dic @@ -1265,10 +1295,12 @@ class Trainer(TrainerIO): def optimizer_closure(): # forward pass output = self.__training_forward(batch, batch_nb, opt_idx) - closure_loss, model_specific_tqdm_metrics = output + closure_loss, progress_bar_metrics, log_metrics = output - # track metrics - self.__add_tqdm_metrics(model_specific_tqdm_metrics) + # track progress bar metrics + self.__add_tqdm_metrics(progress_bar_metrics) + + all_log_metrics.append(log_metrics) # accumulate loss # (if accumulate_grad_batches = 1 no effect) @@ -1321,7 +1353,7 @@ class Trainer(TrainerIO): self.batch_loss_value = 0 self.avg_loss = np.mean(self.running_loss[-100:]) - # update progressbar + # update progress bar if self.show_progress_bar: # add model specific metrics tqdm_metrics = self.__training_tqdm_dict @@ -1332,7 +1364,10 @@ class Trainer(TrainerIO): model = self.__get_model() model.on_batch_end() - return 0, grad_norm_dic + # collapse all metrics into one dict + all_log_metrics = {k: v for d in all_log_metrics for k, v in d.items()} + + return 0, grad_norm_dic, all_log_metrics def __run_evaluation(self, test=False): # when testing make sure user defined a test step @@ -1367,11 +1402,19 @@ class Trainer(TrainerIO): if self.fast_dev_run: max_batches = 1 - eval_out_metrics = self.evaluate(self.model, - dataloaders, - max_batches, - test) - self.__add_tqdm_metrics(eval_out_metrics) + # run evaluation + eval_results = self.evaluate(self.model, + dataloaders, + max_batches, + test) + + _, progress_bar_metrics, log_metrics = self.__process_output(eval_results) + + # add metrics to prog bar + self.__add_tqdm_metrics(progress_bar_metrics) + + # log metrics + self.__log_metrics(log_metrics, {}) # hook model.on_post_performance_check() diff --git a/tests/debug.py b/tests/debug.py index a80da5b676..bce19eda2e 100644 --- a/tests/debug.py +++ b/tests/debug.py @@ -14,6 +14,7 @@ from torch.utils.data import DataLoader from torchvision.datasets import MNIST import numpy as np import pdb +from . import test_models class CoolModel(pl.LightningModule): @@ -59,156 +60,6 @@ class CoolModel(pl.LightningModule): return DataLoader(MNIST('path/to/save', train=False), batch_size=32) -def get_model(use_test_model=False): - # set up model with these hyperparams - hparams = get_hparams() - - if use_test_model: - model = LightningTestModel(hparams) - else: - model = LightningTemplateModel(hparams) - - return model, hparams - - -def get_exp(debug=True, version=None): - # set up exp object without actually saving logs - root_dir = os.path.dirname(os.path.realpath(__file__)) - save_dir = os.path.join(root_dir, 'save_dir') - exp = Experiment(debug=debug, save_dir=save_dir, name='tests_tt_dir', version=version) - return exp - - -def init_save_dir(): - root_dir = os.path.dirname(os.path.realpath(__file__)) - save_dir = os.path.join(root_dir, 'save_dir') - - if os.path.exists(save_dir): - shutil.rmtree(save_dir) - - os.makedirs(save_dir, exist_ok=True) - - return save_dir - - -def clear_save_dir(): - root_dir = os.path.dirname(os.path.realpath(__file__)) - save_dir = os.path.join(root_dir, 'save_dir') - if os.path.exists(save_dir): - shutil.rmtree(save_dir) - - -def load_model(exp, save_dir, on_gpu, map_location=None, module_class=LightningTemplateModel): - - # load trained model - tags_path = exp.get_data_path(exp.name, exp.version) - tags_path = os.path.join(tags_path, 'meta_tags.csv') - - checkpoints = [x for x in os.listdir(save_dir) if '.ckpt' in x] - weights_dir = os.path.join(save_dir, checkpoints[0]) - - trained_model = module_class.load_from_metrics(weights_path=weights_dir, - tags_csv=tags_path, - on_gpu=on_gpu, - ) - - assert trained_model is not None, 'loading model failed' - - return trained_model - - -def run_prediction(dataloader, trained_model): - # run prediction on 1 batch - for batch in dataloader: - break - - x, y = batch - x = x.view(x.size(0), -1) - - y_hat = trained_model(x) - - # acc - labels_hat = torch.argmax(y_hat, dim=1) - val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) - val_acc = torch.tensor(val_acc) - val_acc = val_acc.item() - assert val_acc > 0.70, 'this model is expected to get > 0.7 in test set (it got %f)' % val_acc - - -# ------------------------------------------------------------------------ -def run_gpu_model_test(trainer_options, model, hparams, on_gpu=True): - save_dir = init_save_dir() - - # exp file to get meta - exp = get_exp(False) - exp.argparse(hparams) - exp.save() - - # exp file to get weights - checkpoint = ModelCheckpoint(save_dir) - - # add these to the trainer options - trainer_options['checkpoint_callback'] = checkpoint - trainer_options['experiment'] = exp - - # fit model - trainer = Trainer(**trainer_options) - result = trainer.fit(model) - - # correct result and ok accuracy - assert result == 1, 'amp + ddp model failed sto complete' - - # test model loading - pretrained_model = load_model(exp, save_dir, on_gpu) - - # test new model accuracy - run_prediction(model.test_dataloader, pretrained_model) - - if trainer.use_ddp: - # on hpc this would work fine... but need to hack it for the purpose of the test - trainer.model = pretrained_model - trainer.optimizers, trainer.lr_schedulers = pretrained_model.configure_optimizers() - - # test HPC loading / saving - trainer.hpc_save(save_dir, exp) - trainer.hpc_load(save_dir, on_gpu=on_gpu) - - clear_save_dir() - - -def assert_ok_val_acc(trainer): - # this model should get 0.80+ acc - acc = trainer.training_tqdm_dict['val_acc'] - assert acc > 0.50, f'model failed to get expected 0.50 validation accuracy. Got: {acc}' - - -def assert_ok_test_acc(trainer): - # this model should get 0.80+ acc - acc = trainer.training_tqdm_dict['test_acc'] - assert acc > 0.50, f'model failed to get expected 0.50 validation accuracy. Got: {acc}' - - -def get_hparams(continue_training=False, hpc_exp_number=0): - root_dir = os.path.dirname(os.path.realpath(__file__)) - - args = { - 'drop_prob': 0.2, - 'batch_size': 32, - 'in_features': 28 * 28, - 'learning_rate': 0.001 * 8, - 'optimizer_name': 'adam', - 'data_root': os.path.join(root_dir, 'mnist'), - 'out_features': 10, - 'hidden_dim': 1000} - - if continue_training: - args['test_tube_do_checkpoint_load'] = True - args['hpc_exp_number'] = hpc_exp_number - - hparams = Namespace(**args) - return hparams - - def main(): """ Make sure DDP + AMP continue training correctly @@ -218,19 +69,45 @@ def main(): Make sure DDP2 works :return: """ - os.environ['MASTER_PORT'] = str(np.random.randint(12000, 19000, 1)[0]) - model, hparams = get_model() + hparams = test_models.get_hparams() + model = LightningTestModel(hparams) + + save_dir = test_models.init_save_dir() + + # logger file to get meta + logger = test_models.get_test_tube_logger(False) + logger.log_hyperparams(hparams) + logger.save() + + # logger file to get weights + checkpoint = ModelCheckpoint(save_dir) + trainer_options = dict( show_progress_bar=True, max_nb_epochs=1, train_percent_check=0.4, val_percent_check=0.2, - gpus=2, - print_weights_summary=True, - distributed_backend='ddp2' + checkpoint_callback=checkpoint, + logger=logger, + gpus=[0, 1], + distributed_backend='dp' ) - run_gpu_model_test(trainer_options, model, hparams) + # fit model + trainer = Trainer(**trainer_options) + result = trainer.fit(model) + + # correct result and ok accuracy + assert result == 1, 'training failed to complete' + pretrained_model = test_models.load_model(logger.experiment, save_dir, + module_class=LightningTestModel) + + new_trainer = Trainer(**trainer_options) + new_trainer.test(pretrained_model) + + # test we have good test accuracy + test_models.assert_ok_test_acc(new_trainer) + test_models.clear_save_dir() if __name__ == '__main__': diff --git a/tests/test_models.py b/tests/test_models.py index 9d9536e4bb..ed38dc5e85 100644 --- a/tests/test_models.py +++ b/tests/test_models.py @@ -401,7 +401,7 @@ def test_running_test_pretrained_model_dp(): checkpoint = ModelCheckpoint(save_dir) trainer_options = dict( - show_progress_bar=False, + show_progress_bar=True, max_nb_epochs=1, train_percent_check=0.4, val_percent_check=0.2, @@ -615,7 +615,7 @@ def test_early_stopping_cpu_model(): overfit_pct=0.20, track_grad_norm=2, print_nan_grads=True, - show_progress_bar=False, + show_progress_bar=True, logger=get_test_tube_logger(), train_percent_check=0.1, val_percent_check=0.1