ref: merge backends x/n (#3482)
This commit is contained in:
parent
518a0c0e92
commit
6bcfa8b068
|
@ -133,124 +133,11 @@ class DDPBackend(DDPBase):
|
|||
def train(self):
|
||||
model = self.trainer.model
|
||||
if self.mode == 'ddp':
|
||||
results = self.ddp_train(process_idx=self.task_idx, mp_queue=None, model=model, is_master=True)
|
||||
results = self.ddp_train_tmp(process_idx=self.task_idx, mp_queue=None, model=model, is_master=True)
|
||||
del os.environ['WORLD_SIZE']
|
||||
return results
|
||||
else:
|
||||
self.ddp_train(process_idx=self.task_idx, mp_queue=None, model=model)
|
||||
|
||||
def ddp_train(self, process_idx, mp_queue, model, is_master=False, proc_offset=0):
|
||||
"""
|
||||
Entry point for ddp
|
||||
|
||||
Args:
|
||||
process_idx:
|
||||
mp_queue: multiprocessing queue
|
||||
model:
|
||||
is_master:
|
||||
proc_offset:
|
||||
|
||||
Returns:
|
||||
|
||||
"""
|
||||
# offset the process id if requested
|
||||
process_idx = process_idx + proc_offset
|
||||
|
||||
# show progressbar only on progress_rank 0
|
||||
if (self.trainer.node_rank != 0 or process_idx != 0) and self.trainer.progress_bar_callback is not None:
|
||||
self.trainer.progress_bar_callback.disable()
|
||||
|
||||
# determine which process we are and world size
|
||||
self.trainer.local_rank = process_idx
|
||||
self.trainer.global_rank = self.trainer.node_rank * self.trainer.num_processes + process_idx
|
||||
self.trainer.world_size = self.trainer.num_nodes * self.trainer.num_processes
|
||||
|
||||
# set warning rank
|
||||
rank_zero_only.rank = self.trainer.global_rank
|
||||
|
||||
# set up server using proc 0's ip address
|
||||
# try to init for 20 times at max in case ports are taken
|
||||
# where to store ip_table
|
||||
model.trainer = self.trainer
|
||||
model.init_ddp_connection(
|
||||
self.trainer.global_rank,
|
||||
self.trainer.world_size,
|
||||
self.trainer.is_slurm_managing_tasks
|
||||
)
|
||||
|
||||
# call setup after the ddp process has connected
|
||||
self.trainer.call_setup_hook(model)
|
||||
|
||||
# on world_size=0 let everyone know training is starting
|
||||
if self.trainer.is_global_zero:
|
||||
log.info('-' * 100)
|
||||
log.info(f'distributed_backend={self.trainer.distributed_backend}')
|
||||
log.info(f'All DDP processes registered. Starting ddp with {self.trainer.world_size} processes')
|
||||
log.info('-' * 100)
|
||||
|
||||
# call sync_bn before .cuda(), configure_apex and configure_ddp
|
||||
if self.trainer.sync_batchnorm:
|
||||
model = model.configure_sync_batchnorm(model)
|
||||
|
||||
# MODEL
|
||||
# copy model to each gpu
|
||||
if self.trainer.on_gpu:
|
||||
gpu_idx = process_idx
|
||||
|
||||
# when using ddp, the master process (proc 0) continues running as the main one
|
||||
# this means that the local rank will always be 0
|
||||
# (even if cuda visible devices has other visible gpus)
|
||||
# this means that the master process needs to pull the 0th visible index as the device number
|
||||
if is_master:
|
||||
available_gpus = os.environ['CUDA_VISIBLE_DEVICES'].split(',')
|
||||
gpu_idx = int(available_gpus[self.trainer.local_rank])
|
||||
|
||||
self.trainer.root_gpu = gpu_idx
|
||||
torch.cuda.set_device(self.trainer.root_gpu)
|
||||
model.cuda(self.trainer.root_gpu)
|
||||
|
||||
# CHOOSE OPTIMIZER
|
||||
# allow for lr schedulers as well
|
||||
optimizers, lr_schedulers, optimizer_frequencies = self.trainer.init_optimizers(model)
|
||||
self.trainer.optimizers = optimizers
|
||||
self.trainer.lr_schedulers = lr_schedulers
|
||||
self.trainer.optimizer_frequencies = optimizer_frequencies
|
||||
|
||||
# set model properties before going into wrapper
|
||||
self.trainer.model_connector.copy_trainer_model_properties(model)
|
||||
|
||||
# AMP - run through amp wrapper before going to distributed DP
|
||||
if self.trainer.amp_backend == AMPType.APEX:
|
||||
model, optimizers = model.configure_apex(amp, model, self.trainer.optimizers, self.trainer.amp_level)
|
||||
self.trainer.optimizers = optimizers
|
||||
self.trainer.reinit_scheduler_properties(self.trainer.optimizers, self.trainer.lr_schedulers)
|
||||
|
||||
# DDP2 uses all GPUs on the machine
|
||||
if self.trainer.distributed_backend == 'ddp' or self.trainer.distributed_backend == 'ddp_spawn':
|
||||
device_ids = [self.trainer.root_gpu]
|
||||
else: # includes ddp_cpu
|
||||
device_ids = None
|
||||
|
||||
# allow user to configure ddp
|
||||
model = model.configure_ddp(model, device_ids)
|
||||
|
||||
# set up training routine
|
||||
self.trainer.train_loop.setup_training(model)
|
||||
|
||||
# train or test
|
||||
results = self.train_or_test()
|
||||
|
||||
# get original model
|
||||
model = self.trainer.get_model()
|
||||
|
||||
# persist info in ddp_spawn
|
||||
self.transfer_distrib_spawn_state_on_fit_end(model, mp_queue, results)
|
||||
|
||||
# clean up memory
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
if self.trainer.global_rank == 0 and self.trainer.distributed_backend not in ['ddp_spawn', 'ddp_cpu']:
|
||||
return results
|
||||
self.ddp_train_tmp(process_idx=self.task_idx, mp_queue=None, model=model)
|
||||
|
||||
def _check_can_spawn_children(self):
|
||||
if self._has_spawned_children:
|
||||
|
@ -258,3 +145,27 @@ class DDPBackend(DDPBase):
|
|||
"You tried to run `.fit` or `.test` multiple times in the same script."
|
||||
" This is not supported in DDP mode, switch to `distributed_backend='ddp_spawn'` instead."
|
||||
)
|
||||
|
||||
def set_world_ranks(self, process_idx):
|
||||
self.trainer.local_rank = process_idx
|
||||
self.trainer.global_rank = self.trainer.node_rank * self.trainer.num_processes + process_idx
|
||||
self.trainer.world_size = self.trainer.num_nodes * self.trainer.num_processes
|
||||
|
||||
def model_to_device(self, model, process_idx, is_master):
|
||||
gpu_idx = process_idx
|
||||
|
||||
# when using ddp, the master process (proc 0) continues running as the main one
|
||||
# this means that the local rank will always be 0
|
||||
# (even if cuda visible devices has other visible gpus)
|
||||
# this means that the master process needs to pull the 0th visible index as the device number
|
||||
if is_master:
|
||||
available_gpus = os.environ['CUDA_VISIBLE_DEVICES'].split(',')
|
||||
gpu_idx = int(available_gpus[self.trainer.local_rank])
|
||||
|
||||
self.trainer.root_gpu = gpu_idx
|
||||
torch.cuda.set_device(self.trainer.root_gpu)
|
||||
model.cuda(self.trainer.root_gpu)
|
||||
|
||||
def get_device_ids(self):
|
||||
device_ids = [self.trainer.root_gpu]
|
||||
return device_ids
|
||||
|
|
|
@ -180,6 +180,9 @@ class DDPBase(Accelerator):
|
|||
# clean up memory
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
if self.trainer.global_rank == 0:
|
||||
return results
|
||||
|
||||
def set_world_ranks(self, process_idx):
|
||||
raise NotImplementedError('to create a ddp backend, please implement set_world_ranks')
|
||||
|
||||
|
|
|
@ -11,68 +11,10 @@
|
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License
|
||||
import os
|
||||
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
|
||||
from pytorch_lightning.utilities.distributed import find_free_network_port
|
||||
from pytorch_lightning.accelerators.ddp_base_backend import DDPBase
|
||||
|
||||
try:
|
||||
from apex import amp
|
||||
except ImportError:
|
||||
amp = None
|
||||
from pytorch_lightning.accelerators.ddp_spawn_backend import DDPSpawnBackend
|
||||
|
||||
|
||||
class DDPCPUSpawnBackend(DDPBase):
|
||||
|
||||
def __init__(self, trainer, nprocs):
|
||||
super().__init__(trainer)
|
||||
self.mp_queue = None
|
||||
self.nprocs = nprocs
|
||||
|
||||
def setup(self, model):
|
||||
os.environ['MASTER_PORT'] = os.environ.get('MASTER_PORT', str(find_free_network_port()))
|
||||
|
||||
# pass in a state q
|
||||
smp = mp.get_context('spawn')
|
||||
self.mp_queue = smp.SimpleQueue()
|
||||
|
||||
self.trainer.model = model
|
||||
|
||||
def train(self):
|
||||
model = self.trainer.model
|
||||
|
||||
# train in children process
|
||||
mp.spawn(self.ddp_train_tmp, nprocs=self.nprocs, args=(self.mp_queue, model,))
|
||||
|
||||
# restore main state with best weights
|
||||
best_path = self.mp_queue.get()
|
||||
results = self.mp_queue.get()
|
||||
last_path = self.mp_queue.get()
|
||||
|
||||
# recover the weights of the processes trained in the children
|
||||
self.__recover_child_process_weights(model, best_path, last_path)
|
||||
return results
|
||||
|
||||
def __recover_child_process_weights(self, model, best_path, last_path):
|
||||
# transfer back the best path to the trainer
|
||||
if self.trainer.checkpoint_callback:
|
||||
self.trainer.checkpoint_callback.best_model_path = best_path
|
||||
# todo, pass also best score
|
||||
|
||||
# load last weights
|
||||
if last_path is not None and not self.trainer.testing:
|
||||
ckpt = torch.load(last_path, map_location=lambda storage, loc: storage)
|
||||
model.load_state_dict(ckpt)
|
||||
|
||||
self.trainer.model = model
|
||||
|
||||
def set_world_ranks(self, process_idx):
|
||||
self.trainer.local_rank = process_idx
|
||||
self.trainer.global_rank = self.trainer.node_rank * self.trainer.num_processes + process_idx
|
||||
self.trainer.world_size = self.trainer.num_nodes * self.trainer.num_processes
|
||||
class DDPCPUSpawnBackend(DDPSpawnBackend):
|
||||
|
||||
def model_to_device(self, model, process_idx, is_master):
|
||||
pass
|
||||
|
|
Loading…
Reference in New Issue