add memory parity for PL vs Vanilla (#5170)

* refactor

* memory

* show

* clean

* clean

* try

* device

* reset

* fix

* fix

* mean

* hook

* format

* add todo

Co-authored-by: chaton <thomas@grid.ai>

Co-authored-by: chaton <thomas@grid.ai>
This commit is contained in:
Jirka Borovec 2020-12-23 20:38:57 +01:00 committed by GitHub
parent 176735097a
commit 6adc1b32bd
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 139 additions and 128 deletions

View File

@ -16,7 +16,7 @@ import os
import matplotlib.pylab as plt
import pandas as pd
from benchmarks.test_basic_parity import lightning_loop, vanilla_loop
from benchmarks.test_basic_parity import measure_loops
from tests.base.models import ParityModuleMNIST, ParityModuleRNN
NUM_EPOCHS = 20
@ -34,8 +34,9 @@ def _main():
if os.path.isfile(path_csv):
df_time = pd.read_csv(path_csv, index_col=0)
else:
vanilla = vanilla_loop(cls_model, num_epochs=NUM_EPOCHS, num_runs=NUM_RUNS)
lightning = lightning_loop(cls_model, num_epochs=NUM_EPOCHS, num_runs=NUM_RUNS)
# todo: kind="Vanilla PT" -> use_lightning=False
vanilla = measure_loops(cls_model, kind="Vanilla PT", num_epochs=NUM_EPOCHS, num_runs=NUM_RUNS)
lightning = measure_loops(cls_model, kind="PT Lightning", num_epochs=NUM_EPOCHS, num_runs=NUM_RUNS)
df_time = pd.DataFrame({'vanilla PT': vanilla['durations'][1:], 'PT Lightning': lightning['durations'][1:]})
df_time /= NUM_RUNS

View File

@ -11,7 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import time
import numpy as np
@ -19,118 +19,156 @@ import pytest
import torch
from tqdm import tqdm
from pytorch_lightning import seed_everything, Trainer
import tests.base.develop_utils as tutils
from pytorch_lightning import LightningModule, seed_everything, Trainer
from tests.base.models import ParityModuleMNIST, ParityModuleRNN
def assert_parity_relative(pl_values, pt_values, norm_by: float = 1, max_diff: float = 0.1):
# assert speeds
diffs = np.asarray(pl_values) - np.mean(pt_values)
# norm by vanilla time
diffs = diffs / norm_by
# relative to mean reference value
diffs = diffs / np.mean(pt_values)
assert np.mean(diffs) < max_diff, f"Lightning diff {diffs} was worse than vanilla PT (threshold {max_diff})"
def assert_parity_absolute(pl_values, pt_values, norm_by: float = 1, max_diff: float = 0.55):
# assert speeds
diffs = np.asarray(pl_values) - np.mean(pt_values)
# norm by event count
diffs = diffs / norm_by
assert np.mean(diffs) < max_diff, f"Lightning {diffs} was worse than vanilla PT (threshold {max_diff})"
# ParityModuleMNIST runs with num_workers=1
@pytest.mark.parametrize('cls_model,max_diff', [
(ParityModuleRNN, 0.05),
(ParityModuleMNIST, 0.25), # todo: lower this thr
@pytest.mark.parametrize('cls_model,max_diff_speed,max_diff_memory', [
(ParityModuleRNN, 0.05, 0.0),
(ParityModuleMNIST, 0.25, 0.0), # todo: lower this thr
])
@pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine")
def test_pytorch_parity(tmpdir, cls_model, max_diff: float, num_epochs: int = 4, num_runs: int = 3):
def test_pytorch_parity(
tmpdir,
cls_model: LightningModule,
max_diff_speed: float,
max_diff_memory: float,
num_epochs: int = 4,
num_runs: int = 3,
):
"""
Verify that the same pytorch and lightning models achieve the same results
"""
lightning = lightning_loop(cls_model, num_runs, num_epochs)
vanilla = vanilla_loop(cls_model, num_runs, num_epochs)
lightning = measure_loops(cls_model, kind="PT Lightning", num_epochs=num_epochs, num_runs=num_runs)
vanilla = measure_loops(cls_model, kind="Vanilla PT", num_epochs=num_epochs, num_runs=num_runs)
# make sure the losses match exactly to 5 decimal places
print(f"Losses are for... \n vanilla: {vanilla['losses']} \n lightning: {lightning['losses']}")
for pl_out, pt_out in zip(lightning['losses'], vanilla['losses']):
np.testing.assert_almost_equal(pl_out, pt_out, 5)
# the fist run initialize dataset (download & filter)
tutils.assert_speed_parity_absolute(
lightning['durations'][1:], vanilla['durations'][1:], nb_epochs=num_epochs, max_diff=max_diff
# drop the first run for initialize dataset (download & filter)
assert_parity_absolute(
lightning['durations'][1:], vanilla['durations'][1:], norm_by=num_epochs, max_diff=max_diff_speed
)
assert_parity_relative(lightning['memory'], vanilla['memory'], max_diff=max_diff_memory)
def vanilla_loop(cls_model, num_runs=10, num_epochs=10):
def _hook_memory():
if torch.cuda.is_available():
torch.cuda.synchronize()
used_memory = torch.cuda.max_memory_allocated()
else:
used_memory = np.nan
return used_memory
def measure_loops(cls_model, kind, num_runs=10, num_epochs=10):
"""
Returns an array with the last loss from each epoch for each run
"""
hist_losses = []
hist_durations = []
hist_memory = []
device = torch.device('cuda' if torch.cuda.is_available() else "cpu")
device_type = "cuda" if torch.cuda.is_available() else "cpu"
torch.backends.cudnn.deterministic = True
for i in tqdm(range(num_runs), desc=f'Vanilla PT with {cls_model.__name__}'):
for i in tqdm(range(num_runs), desc=f'{kind} with {cls_model.__name__}'):
gc.collect()
if device_type == 'cuda':
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_cached()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_accumulated_memory_stats()
torch.cuda.reset_peak_memory_stats()
time.sleep(1)
time_start = time.perf_counter()
# set seed
seed = i
seed_everything(seed)
# init model parts
model = cls_model()
dl = model.train_dataloader()
optimizer = model.configure_optimizers()
# model to GPU
model = model.to(device)
epoch_losses = []
# as the first run is skipped, no need to run it long
for epoch in range(num_epochs if i > 0 else 1):
# run through full training set
for j, batch in enumerate(dl):
batch = [x.to(device) for x in batch]
loss_dict = model.training_step(batch, j)
loss = loss_dict['loss']
loss.backward()
optimizer.step()
optimizer.zero_grad()
# track last epoch loss
epoch_losses.append(loss.item())
_loop = lightning_loop if kind == "PT Lightning" else vanilla_loop
final_loss, used_memory = _loop(cls_model, idx=i, device_type=device_type, num_epochs=num_epochs)
time_end = time.perf_counter()
hist_durations.append(time_end - time_start)
hist_losses.append(epoch_losses[-1])
return {
'losses': hist_losses,
'durations': hist_durations,
}
def lightning_loop(cls_model, num_runs=10, num_epochs=10):
hist_losses = []
hist_durations = []
for i in tqdm(range(num_runs), desc=f'PT Lightning with {cls_model.__name__}'):
time_start = time.perf_counter()
# set seed
seed = i
seed_everything(seed)
model = cls_model()
# init model parts
trainer = Trainer(
# as the first run is skipped, no need to run it long
max_epochs=num_epochs if i > 0 else 1,
progress_bar_refresh_rate=0,
weights_summary=None,
gpus=1,
checkpoint_callback=False,
deterministic=True,
logger=False,
replace_sampler_ddp=False,
)
trainer.fit(model)
final_loss = trainer.train_loop.running_loss.last().item()
hist_losses.append(final_loss)
time_end = time.perf_counter()
hist_durations.append(time_end - time_start)
hist_memory.append(used_memory)
return {
'losses': hist_losses,
'durations': hist_durations,
'memory': hist_memory,
}
def vanilla_loop(cls_model, idx, device_type: str = 'cuda', num_epochs=10):
device = torch.device(device_type)
# set seed
seed_everything(idx)
# init model parts
model = cls_model()
dl = model.train_dataloader()
optimizer = model.configure_optimizers()
# model to GPU
model = model.to(device)
epoch_losses = []
# as the first run is skipped, no need to run it long
for epoch in range(num_epochs if idx > 0 else 1):
# run through full training set
for j, batch in enumerate(dl):
batch = [x.to(device) for x in batch]
loss_dict = model.training_step(batch, j)
loss = loss_dict['loss']
loss.backward()
optimizer.step()
optimizer.zero_grad()
# track last epoch loss
epoch_losses.append(loss.item())
return epoch_losses[-1], _hook_memory()
def lightning_loop(cls_model, idx, device_type: str = 'cuda', num_epochs=10):
seed_everything(idx)
model = cls_model()
# init model parts
trainer = Trainer(
# as the first run is skipped, no need to run it long
max_epochs=num_epochs if idx > 0 else 1,
progress_bar_refresh_rate=0,
weights_summary=None,
gpus=1 if device_type == 'cuda' else 0,
checkpoint_callback=False,
deterministic=True,
logger=False,
replace_sampler_ddp=False,
)
trainer.fit(model)
return trainer.train_loop.running_loss.last().item(), _hook_memory()

View File

@ -28,35 +28,32 @@ from tests.backends import DDPLauncher
from tests.base.boring_model import BoringModel, RandomDataset
@pytest.mark.skipif(platform.system() == "Windows",
reason="Distributed training is not supported on Windows")
@pytest.mark.skipif(platform.system() == "Windows", reason="Distributed training is not supported on Windows")
@pytest.mark.skipif(not FAIRSCALE_AVAILABLE, reason="Fairscale is not available")
def test_ddp_sharded_plugin_correctness_one_device():
plugin_parity_test(
accelerator='ddp_cpu',
max_percent_speed_diff=0.15, # slower speed due to one CPU doing additional sequential memory saving calls
plugin=DDPShardedPlugin(),
model_cls=SeedTrainLoaderModel
model_cls=SeedTrainLoaderModel,
max_percent_speed_diff=0.15, # todo: slower speed due to one CPU doing additional sequential memory saving calls
)
@pytest.mark.skipif(not torch.cuda.is_available(), reason="requires GPU machine")
@pytest.mark.skipif(platform.system() == "Windows",
reason="Distributed training is not supported on Windows")
@pytest.mark.skipif(platform.system() == "Windows", reason="Distributed training is not supported on Windows")
@pytest.mark.skipif(not FAIRSCALE_AVAILABLE, reason="Fairscale is not available")
def test_ddp_sharded_plugin_correctness_one_gpu():
plugin_parity_test(
gpus=1,
accelerator='ddp_spawn',
plugin=DDPShardedPlugin(),
model_cls=SeedTrainLoaderModel
model_cls=SeedTrainLoaderModel,
)
@pytest.mark.skipif(not NATIVE_AMP_AVAILABLE, reason="Requires native AMP")
@pytest.mark.skipif(not torch.cuda.is_available(), reason="requires GPU machine")
@pytest.mark.skipif(platform.system() == "Windows",
reason="Distributed training is not supported on Windows")
@pytest.mark.skipif(platform.system() == "Windows", reason="Distributed training is not supported on Windows")
@pytest.mark.skipif(not FAIRSCALE_AVAILABLE, reason="Fairscale is not available")
def test_ddp_sharded_plugin_correctness_amp_one_gpu():
plugin_parity_test(
@ -64,14 +61,13 @@ def test_ddp_sharded_plugin_correctness_amp_one_gpu():
precision=16,
accelerator='ddp_spawn',
plugin=DDPShardedPlugin(),
model_cls=SeedTrainLoaderModel
model_cls=SeedTrainLoaderModel,
)
@pytest.mark.skip(reason="Not a critical test, skip till drone CI performance improves.")
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
@pytest.mark.skipif(platform.system() == "Windows",
reason="Distributed training is not supported on Windows")
@pytest.mark.skipif(platform.system() == "Windows", reason="Distributed training is not supported on Windows")
@pytest.mark.skipif(not FAIRSCALE_AVAILABLE, reason="Fairscale is not available")
def test_ddp_sharded_plugin_correctness_multi_gpu():
plugin_parity_test(
@ -79,13 +75,12 @@ def test_ddp_sharded_plugin_correctness_multi_gpu():
accelerator='ddp_spawn',
plugin=DDPShardedPlugin(),
model_cls=SeedTrainLoaderModel,
max_percent_speed_diff=0.25
max_percent_speed_diff=0.25, # todo: Increase speed diff since only 2 GPUs sharding 2 optimizers
)
@pytest.mark.skipif(not NATIVE_AMP_AVAILABLE, reason="Requires native AMP")
@pytest.mark.skipif(platform.system() == "Windows",
reason="Distributed training is not supported on Windows")
@pytest.mark.skipif(platform.system() == "Windows", reason="Distributed training is not supported on Windows")
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
@pytest.mark.skipif(not FAIRSCALE_AVAILABLE, reason="Fairscale is not available")
def test_ddp_sharded_plugin_correctness_amp_multi_gpu():
@ -95,13 +90,12 @@ def test_ddp_sharded_plugin_correctness_amp_multi_gpu():
accelerator='ddp_spawn',
plugin=DDPShardedPlugin(),
model_cls=SeedTrainLoaderModel,
max_percent_speed_diff=0.25
max_percent_speed_diff=0.25, # todo: Increase speed diff since only 2 GPUs sharding 2 optimizers
)
@pytest.mark.skipif(not NATIVE_AMP_AVAILABLE, reason="Requires native AMP")
@pytest.mark.skipif(platform.system() == "Windows",
reason="Distributed training is not supported on Windows")
@pytest.mark.skipif(platform.system() == "Windows", reason="Distributed training is not supported on Windows")
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
@pytest.mark.skipif(not FAIRSCALE_AVAILABLE, reason="Fairscale is not available")
def test_ddp_string_sharded_plugin_correctness_amp_multi_gpu():
@ -111,7 +105,7 @@ def test_ddp_string_sharded_plugin_correctness_amp_multi_gpu():
accelerator='ddp_spawn',
plugin='ddp_sharded',
model_cls=SeedTrainLoaderModel,
max_percent_speed_diff=0.25
max_percent_speed_diff=0.25, # todo: Increase speed diff since only 2 GPUs sharding 2 optimizers
)
@ -147,8 +141,7 @@ def test_ddp_sharded_plugin_correctness_amp_multi_gpu_ddp(tmpdir, args=None):
@pytest.mark.skip(reason="Current issue with multiple optimizers and FairScale.")
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
@pytest.mark.skipif(platform.system() == "Windows",
reason="Distributed training is not supported on Windows")
@pytest.mark.skipif(platform.system() == "Windows", reason="Distributed training is not supported on Windows")
@pytest.mark.skipif(not FAIRSCALE_AVAILABLE, reason="Fairscale is not available")
def test_ddp_sharded_plugin_correctness_multi_gpu_multi_optim():
"""
@ -159,14 +152,13 @@ def test_ddp_sharded_plugin_correctness_multi_gpu_multi_optim():
gpus=2,
accelerator='ddp_spawn',
model_cls=SeedTrainLoaderMultipleOptimizersModel,
max_percent_speed_diff=0.25 # Increase speed diff since only 2 GPUs sharding 2 optimizers
max_percent_speed_diff=0.25, # todo: Increase speed diff since only 2 GPUs sharding 2 optimizers
)
@pytest.mark.skip(reason="Current issue with multiple optimizers and FairScale.")
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
@pytest.mark.skipif(platform.system() == "Windows",
reason="Distributed training is not supported on Windows")
@pytest.mark.skipif(platform.system() == "Windows", reason="Distributed training is not supported on Windows")
@pytest.mark.skipif(not FAIRSCALE_AVAILABLE, reason="Fairscale is not available")
def test_ddp_sharded_plugin_correctness_multi_gpu_multi_optim_manual(tmpdir):
"""
@ -177,7 +169,7 @@ def test_ddp_sharded_plugin_correctness_multi_gpu_multi_optim_manual(tmpdir):
gpus=2,
accelerator='ddp_spawn',
model_cls=SeedTrainLoaderManualModel,
max_percent_speed_diff=0.25 # Increase speed diff since only 2 GPUs sharding 2 optimizers
max_percent_speed_diff=0.25, # todo: Increase speed diff since only 2 GPUs sharding 2 optimizers
)

View File

@ -14,8 +14,6 @@
import functools
import os
import numpy as np
from pytorch_lightning import seed_everything
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.loggers import TensorBoardLogger, TestTubeLogger
@ -23,24 +21,6 @@ from tests import TEMP_PATH, RANDOM_PORTS
from tests.base.model_template import EvalModelTemplate
def assert_speed_parity_relative(pl_times, pt_times, max_diff: float = 0.1):
# assert speeds
diffs = np.asarray(pl_times) - np.asarray(pt_times)
# norm by vanila time
diffs = diffs / np.asarray(pt_times)
assert np.alltrue(diffs < max_diff), \
f"lightning {diffs} was slower than PT (threshold {max_diff})"
def assert_speed_parity_absolute(pl_times, pt_times, nb_epochs, max_diff: float = 0.55):
# assert speeds
diffs = np.asarray(pl_times) - np.asarray(pt_times)
# norm by vanila time
diffs = diffs / nb_epochs
assert np.alltrue(diffs < max_diff), \
f"lightning {diffs} was slower than PT (threshold {max_diff})"
def get_default_logger(save_dir, version=None):
# set up logger object without actually saving logs
logger = TensorBoardLogger(save_dir, name='lightning_logs', version=version)