Create 3 steps to Lightning guide to replace quick-start (#3055)
* Update new-project.rst * Update new-project.rst * Create 3_steps.rst * revert * remove the callbacks vid * fix blank line * change ref * spelling * spelling * Update docs/source/new-project.rst Co-authored-by: Nathan Raw <nxr9266@g.rit.edu> * spelling * spelling * spelling * spelling * spelling * spelling * spelling Co-authored-by: William Falcon <waf2107@columbia.edu> Co-authored-by: Nathan Raw <nxr9266@g.rit.edu>
This commit is contained in:
parent
3453bba898
commit
6abd742145
|
@ -0,0 +1,531 @@
|
|||
.. testsetup:: *
|
||||
|
||||
from pytorch_lightning.core.lightning import LightningModule
|
||||
from pytorch_lightning.core.datamodule import LightningDataModule
|
||||
from pytorch_lightning.trainer.trainer import Trainer
|
||||
import os
|
||||
import torch
|
||||
from torch.nn import functional as F
|
||||
from torch.utils.data import DataLoader
|
||||
from torch.utils.data import DataLoader
|
||||
import pytorch_lightning as pl
|
||||
from torch.utils.data import random_split
|
||||
|
||||
.. _3-steps:
|
||||
|
||||
####################
|
||||
Lightning in 3 steps
|
||||
####################
|
||||
|
||||
**In this guide we'll show you how to organize your PyTorch code into Lightning in 3 simple steps.**
|
||||
|
||||
Organizing your code with PyTorch Lightning makes your code:
|
||||
|
||||
* Keep all the flexibility (this is all pure PyTorch), but removes a ton of boilerplate
|
||||
* More readable by decoupling the research code from the engineering
|
||||
* Easier to reproduce
|
||||
* Less error prone by automating most of the training loop and tricky engineering
|
||||
* Scalable to any hardware without changing your model
|
||||
|
||||
----------
|
||||
|
||||
Here's a 2 minute conversion guide for PyTorch projects:
|
||||
|
||||
.. raw:: html
|
||||
|
||||
<video width="100%" controls autoplay src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/pl_quick_start_full.m4v"></video>
|
||||
|
||||
----------
|
||||
|
||||
*********************************
|
||||
Step 0: Install PyTorch Lightning
|
||||
*********************************
|
||||
|
||||
|
||||
You can install using `pip <https://pypi.org/project/pytorch-lightning/>`_
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
pip install pytorch-lightning
|
||||
|
||||
Or with `conda <https://anaconda.org/conda-forge/pytorch-lightning>`_ (see how to install conda `here <https://docs.conda.io/projects/conda/en/latest/user-guide/install/>`_):
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
conda install pytorch-lightning -c conda-forge
|
||||
|
||||
You could also use conda environments
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
conda activate my_env
|
||||
pip install pytorch-lightning
|
||||
|
||||
|
||||
----------
|
||||
|
||||
******************************
|
||||
Step 1: Define LightningModule
|
||||
******************************
|
||||
|
||||
.. code-block::
|
||||
|
||||
import os
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torchvision.datasets import MNIST
|
||||
from torchvision import transforms
|
||||
from torch.utils.data import DataLoader
|
||||
import pytorch_lightning as pl
|
||||
from torch.utils.data import random_split
|
||||
|
||||
class LitModel(pl.LightningModule):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.layer_1 = torch.nn.Linear(28 * 28, 128)
|
||||
self.layer_2 = torch.nn.Linear(128, 10)
|
||||
|
||||
def forward(self, x):
|
||||
x = x.view(x.size(0), -1)
|
||||
x = self.layer_1(x)
|
||||
x = F.relu(x)
|
||||
x = self.layer_2(x)
|
||||
return x
|
||||
|
||||
def configure_optimizers(self):
|
||||
optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)
|
||||
return optimizer
|
||||
|
||||
def training_step(self, batch, batch_idx):
|
||||
x, y = batch
|
||||
y_hat = self(x)
|
||||
loss = F.cross_entropy(y_hat, y)
|
||||
result = pl.TrainResult(loss)
|
||||
return result
|
||||
|
||||
def validation_step(self, batch, batch_idx):
|
||||
x, y = batch
|
||||
y_hat = self(x)
|
||||
loss = F.cross_entropy(y_hat, y)
|
||||
result = pl.EvalResult(checkpoint_on=loss)
|
||||
result.log('val_loss', loss)
|
||||
return result
|
||||
|
||||
def test_step(self, batch, batch_idx):
|
||||
x, y = batch
|
||||
y_hat = self(x)
|
||||
loss = F.cross_entropy(y_hat, y)
|
||||
result = pl.EvalResult()
|
||||
result.log('test_loss', loss)
|
||||
return result
|
||||
|
||||
The :class:`~pytorch_lightning.core.LightningModule` holds your research code:
|
||||
|
||||
- The Train loop
|
||||
- The Validation loop
|
||||
- The Test loop
|
||||
- The Model + system architecture
|
||||
- The Optimizer
|
||||
|
||||
A :class:`~pytorch_lightning.core.LightningModule` is a :class:`torch.nn.Module` but with added functionality.
|
||||
It organizes your research code into :ref:`hooks`.
|
||||
|
||||
In the snippet above we override the basic hooks, but a full list of hooks to customize can be found under :ref:`hooks`.
|
||||
|
||||
You can use your :class:`~pytorch_lightning.core.LightningModule` just like a PyTorch model.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
model = LitModel()
|
||||
model.eval()
|
||||
|
||||
y_hat = model(x)
|
||||
|
||||
model.anything_you_can_do_with_pytorch()
|
||||
|
||||
More details in :ref:`lightning-module` docs.
|
||||
|
||||
Convert your PyTorch Module to Lightning
|
||||
========================================
|
||||
|
||||
1. Move your computational code
|
||||
-------------------------------
|
||||
Move the model architucture and forward pass to your :class:`~pytorch_lightning.core.LightningModule`.
|
||||
|
||||
.. code-block::
|
||||
|
||||
class LitModel(pl.LightningModule):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.layer_1 = torch.nn.Linear(28 * 28, 128)
|
||||
self.layer_2 = torch.nn.Linear(128, 10)
|
||||
|
||||
def forward(self, x):
|
||||
x = x.view(x.size(0), -1)
|
||||
x = self.layer_1(x)
|
||||
x = F.relu(x)
|
||||
x = self.layer_2(x)
|
||||
return x
|
||||
|
||||
2. Move the optimizer(s) and schedulers
|
||||
---------------------------------------
|
||||
Move your optimizers to :func:`pytorch_lightning.core.LightningModule.configure_optimizers` hook. Make sure to use the hook parameters (self in this case).
|
||||
|
||||
.. code-block::
|
||||
|
||||
class LitModel(pl.LightningModule):
|
||||
|
||||
def configure_optimizers(self):
|
||||
optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)
|
||||
return optimizer
|
||||
|
||||
3. Find the train loop "meat"
|
||||
-----------------------------
|
||||
Lightning automates most of the trining for you, the epoch and batch iterations, all you need to keep is the training step logic. This should go into :func:`pytorch_lightning.core.LightningModule.training_step` hook (make sure to use the hook parameters, self in this case):
|
||||
|
||||
.. code-block::
|
||||
|
||||
class LitModel(pl.LightningModule):
|
||||
|
||||
def training_step(self, batch, batch_idx):
|
||||
x, y = batch
|
||||
y_hat = self(x)
|
||||
loss = F.cross_entropy(y_hat, y)
|
||||
return loss
|
||||
|
||||
4. Find the val loop "meat"
|
||||
-----------------------------
|
||||
Lightning automates the validation (enabling gradients in the train loop and disabling in eval). To add an (optional) validation loop add logic to :func:`pytorch_lightning.core.LightningModule.validation_step` hook (make sure to use the hook parameters, self in this case):
|
||||
|
||||
.. testcode::
|
||||
|
||||
class LitModel(LightningModule):
|
||||
|
||||
def validation_step(self, batch, batch_idx):
|
||||
x, y = batch
|
||||
y_hat = self(x)
|
||||
val_loss = F.cross_entropy(y_hat, y)
|
||||
return val_loss
|
||||
|
||||
5. Find the test loop "meat"
|
||||
-----------------------------
|
||||
You might also need an optional test loop. Add the following callback to your :class:`~pytorch_lightning.core.LightningModule`
|
||||
|
||||
.. code-block::
|
||||
|
||||
class LitModel(pl.LightningModule):
|
||||
|
||||
def test_step(self, batch, batch_idx):
|
||||
x, y = batch
|
||||
y_hat = self(x)
|
||||
loss = F.cross_entropy(y_hat, y)
|
||||
result = pl.EvalResult()
|
||||
result.log('test_loss', loss)
|
||||
return result
|
||||
|
||||
.. note:: The test loop is not automated in Lightning. You will need to specifically call test (this is done so you don't use the test set by mistake).
|
||||
|
||||
6. Remove any .cuda() or to.device() calls
|
||||
------------------------------------------
|
||||
Your :class:`~pytorch_lightning.core.LightningModule` can automatically run on any hardware!
|
||||
|
||||
7. Wrap loss in a TrainResult/EvalResult
|
||||
----------------------------------------
|
||||
Instead of returning the loss you can also use :class:`~pytorch_lightning.core.step_result.TrainResult` and :class:`~pytorch_lightning.core.step_result.EvalResult`, plain Dict objects that give you options for logging on every step and/or at the end of the epoch.
|
||||
It also allows logging to the progress bar (by setting prog_bar=True). Read more in :ref:`result`.
|
||||
|
||||
.. code-block::
|
||||
|
||||
class LitModel(pl.LightningModule):
|
||||
|
||||
def training_step(self, batch, batch_idx):
|
||||
x, y = batch
|
||||
y_hat = self(x)
|
||||
loss = F.cross_entropy(y_hat, y)
|
||||
result = pl.TrainResult(loss)
|
||||
# Add logging to progress bar (note that efreshing the progress bar too frequently
|
||||
# in Jupyter notebooks or Colab may freeze your UI)
|
||||
result.log('train_loss', loss, prog_bar=True)
|
||||
return result
|
||||
|
||||
def validation_step(self, batch, batch_idx):
|
||||
x, y = batch
|
||||
y_hat = self(x)
|
||||
loss = F.cross_entropy(y_hat, y)
|
||||
# Checkpoint model based on validation loss
|
||||
result = pl.EvalResult(checkpoint_on=loss)
|
||||
result.log('val_loss', loss)
|
||||
return result
|
||||
|
||||
|
||||
8. Override default callbacks
|
||||
-----------------------------
|
||||
A :class:`~pytorch_lightning.core.LightningModule` handles advances cases by allowing you to override any critical part of training
|
||||
via :ref:`hooks` that are called on your :class:`~pytorch_lightning.core.LightningModule`.
|
||||
|
||||
.. code-block::
|
||||
|
||||
class LitModel(pl.LightningModule):
|
||||
|
||||
def backward(self, trainer, loss, optimizer, optimizer_idx):
|
||||
loss.backward()
|
||||
|
||||
def optimizer_step(self, epoch, batch_idx,
|
||||
optimizer, optimizer_idx,
|
||||
second_order_closure,
|
||||
on_tpu, using_native_amp, using_lbfgs):
|
||||
optimizer.step()
|
||||
|
||||
For certain train/val/test loops, you may wish to do more than just logging. In this case,
|
||||
you can also implement `__epoch_end` which gives you the output for each step
|
||||
|
||||
Here's the motivating Pytorch example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
validation_step_outputs = []
|
||||
for batch_idx, batch in val_dataloader():
|
||||
out = validation_step(batch, batch_idx)
|
||||
validation_step_outputs.append(out)
|
||||
|
||||
validation_epoch_end(validation_step_outputs)
|
||||
|
||||
And the lightning equivalent
|
||||
|
||||
.. code-block::
|
||||
|
||||
class LitModel(pl.LightningModule):
|
||||
|
||||
def validation_step(self, batch, batch_idx):
|
||||
loss = ...
|
||||
predictions = ...
|
||||
result = pl.EvalResult(checkpoint_on=loss)
|
||||
result.log('val_loss', loss)
|
||||
result.predictions = predictions
|
||||
|
||||
def validation_epoch_end(self, validation_step_outputs):
|
||||
all_val_losses = validation_step_outputs.val_loss
|
||||
all_predictions = validation_step_outputs.predictions
|
||||
|
||||
----------
|
||||
|
||||
**********************************
|
||||
Step 2: Fit with Lightning Trainer
|
||||
**********************************
|
||||
|
||||
.. code-block::
|
||||
|
||||
# dataloaders
|
||||
dataset = MNIST(os.getcwd(), download=True, transform=transforms.ToTensor())
|
||||
train, val = random_split(dataset, [55000, 5000])
|
||||
train_loader = DataLoader(train)
|
||||
val_loader = DataLoader(val)
|
||||
|
||||
# init model
|
||||
model = LitModel()
|
||||
|
||||
# most basic trainer, uses good defaults (auto-tensorboard, checkpoints, logs, and more)
|
||||
trainer = pl.Trainer()
|
||||
trainer.fit(model, train_loader, val_loader)
|
||||
|
||||
Init :class:`~pytorch_lightning.core.LightningModule`, your PyTorch dataloaders, and then the PyTorch Lightning :class:`~pytorch_lightning.trainer.Trainer`.
|
||||
The :class:`~pytorch_lightning.trainer.Trainer` will automate:
|
||||
|
||||
* The epoch iteration
|
||||
* The batch iteration
|
||||
* The calling of optimizer.step()
|
||||
* :ref:`weights-loading`
|
||||
* Logging to Tensorboard (see :ref:`loggers` options)
|
||||
* :ref:`multi-gpu-training` support
|
||||
* :ref:`tpu`
|
||||
* :ref:`16-bit` support
|
||||
|
||||
All automated code is rigorously tested and benchmarked.
|
||||
|
||||
Check out more flags in the :ref:`trainer` docs.
|
||||
|
||||
Using CPUs/GPUs/TPUs
|
||||
====================
|
||||
It's trivial to use CPUs, GPUs or TPUs in Lightning. There's NO NEED to change your code, simply change the :class:`~pytorch_lightning.trainer.Trainer` options.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
# train on 1024 CPUs across 128 machines
|
||||
trainer = pl.Trainer(
|
||||
num_processes=8,
|
||||
num_nodes=128
|
||||
)
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
# train on 1 GPU
|
||||
trainer = pl.Trainer(gpus=1)
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
# train on 256 GPUs
|
||||
trainer = pl.Trainer(
|
||||
gpus=8,
|
||||
num_nodes=32
|
||||
)
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
# Multi GPU with mixed precision
|
||||
trainer = pl.Trainer(gpus=2, precision=16)
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
# Train on TPUs
|
||||
trainer = pl.Trainer(tpu_cores=8)
|
||||
|
||||
Without changing a SINGLE line of your code, you can now do the following with the above code:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
# train on TPUs using 16 bit precision with early stopping
|
||||
# using only half the training data and checking validation every quarter of a training epoch
|
||||
trainer = pl.Trainer(
|
||||
tpu_cores=8,
|
||||
precision=16,
|
||||
early_stop_callback=True,
|
||||
limit_train_batches=0.5,
|
||||
val_check_interval=0.25
|
||||
)
|
||||
|
||||
************************
|
||||
Step 3: Define Your Data
|
||||
************************
|
||||
Lightning works with pure PyTorch DataLoaders
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
train_dataloader = DataLoader(...)
|
||||
val_dataloader = DataLoader(...)
|
||||
trainer.fit(model, train_dataloader, val_dataloader)
|
||||
|
||||
Optional: DataModule
|
||||
====================
|
||||
DataLoader and data processing code tends to end up scattered around.
|
||||
Make your data code more reusable by organizing
|
||||
it into a :class:`~pytorch_lightning.core.datamodule.LightningDataModule`
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
class MNISTDataModule(pl.LightningDataModule):
|
||||
|
||||
def __init__(self, batch_size=32):
|
||||
super().__init__()
|
||||
self.batch_size = batch_size
|
||||
|
||||
# When doing distributed training, Datamodules have two optional arguments for
|
||||
# granular control over download/prepare/splitting data:
|
||||
|
||||
# OPTIONAL, called only on 1 GPU/machine
|
||||
def prepare_data(self):
|
||||
MNIST(os.getcwd(), train=True, download=True)
|
||||
MNIST(os.getcwd(), train=False, download=True)
|
||||
|
||||
# OPTIONAL, called for every GPU/machine (assigning state is OK)
|
||||
def setup(self, stage):
|
||||
# transforms
|
||||
transform=transforms.Compose([
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize((0.1307,), (0.3081,))
|
||||
])
|
||||
# split dataset
|
||||
if stage == 'fit':
|
||||
mnist_train = MNIST(os.getcwd(), train=True, transform=transform)
|
||||
self.mnist_train, self.mnist_val = random_split(mnist_train, [55000, 5000])
|
||||
if stage == 'test':
|
||||
mnist_test = MNIST(os.getcwd(), train=False, transform=transform)
|
||||
self.mnist_test = MNIST(os.getcwd(), train=False, download=True)
|
||||
|
||||
# return the dataloader for each split
|
||||
def train_dataloader(self):
|
||||
mnist_train = DataLoader(self.mnist_train, batch_size=self.batch_size)
|
||||
return mnist_train
|
||||
|
||||
def val_dataloader(self):
|
||||
mnist_val = DataLoader(self.mnist_val, batch_size=self.batch_size)
|
||||
return mnist_val
|
||||
|
||||
def test_dataloader(self):
|
||||
mnist_test = DataLoader(mnist_test, batch_size=self.batch_size)
|
||||
return mnist_test
|
||||
|
||||
:class:`~pytorch_lightning.core.datamodule.LightningDataModule` is designed to enable sharing and reusing data splits
|
||||
and transforms across different projects. It encapsulates all the steps needed to process data: downloading,
|
||||
tokenizeing, processing etc.
|
||||
|
||||
Now you can simply pass your :class:`~pytorch_lightning.core.datamodule.LightningDataModule` to
|
||||
the :class:`~pytorch_lightning.trainer.Trainer`:
|
||||
|
||||
.. code-block::
|
||||
|
||||
# init model
|
||||
model = LitModel()
|
||||
|
||||
# init data
|
||||
dm = MNISTDataModule()
|
||||
|
||||
# train
|
||||
trainer = pl.Trainer()
|
||||
trainer.fit(model, dm)
|
||||
|
||||
# test
|
||||
trainer.test(datamodule=dm)
|
||||
|
||||
DataModules are specifically useful for building models based on data. Read more on :ref:`data-modules`.
|
||||
|
||||
**********
|
||||
Learn more
|
||||
**********
|
||||
|
||||
That's it! Once you build your module, data, and call trainer.fit(), Lightning trainer calls each loop at the correct time as needed.
|
||||
|
||||
You can then boot up your logger or tensorboard instance to view training logs
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
tensorboard --logdir ./lightning_logs
|
||||
|
||||
---------------
|
||||
|
||||
|
||||
Advanced Lightning Features
|
||||
===========================
|
||||
|
||||
Once you define and train your first Lightning model, you might want to try other cool features like
|
||||
|
||||
- :ref:`loggers`
|
||||
- `Automatic checkpointing <https://pytorch-lightning.readthedocs.io/en/stable/weights_loading.html>`_
|
||||
- `Automatic early stopping <https://pytorch-lightning.readthedocs.io/en/stable/early_stopping.html>`_
|
||||
- `Add custom callbacks <https://pytorch-lightning.readthedocs.io/en/stable/callbacks.html>`_ (self-contained programs that can be reused across projects)
|
||||
- `Dry run mode <https://pytorch-lightning.readthedocs.io/en/stable/debugging.html#fast-dev-run>`_ (Hit every line of your code once to see if you have bugs, instead of waiting hours to crash on validation ;)
|
||||
- `Automatically overfit your model for a sanity test <https://pytorch-lightning.readthedocs.io/en/stable/debugging.html?highlight=overfit#make-model-overfit-on-subset-of-data>`_
|
||||
- `Automatic truncated-back-propagation-through-time <https://pytorch-lightning.readthedocs.io/en/stable/api/pytorch_lightning.trainer.training_loop.html?highlight=truncated#truncated-backpropagation-through-time>`_
|
||||
- `Automatically scale your batch size <https://pytorch-lightning.readthedocs.io/en/stable/training_tricks.html?highlight=batch%20size#auto-scaling-of-batch-size>`_
|
||||
- `Automatically find a good learning rate <https://pytorch-lightning.readthedocs.io/en/stable/lr_finder.html>`_
|
||||
- `Load checkpoints directly from S3 <https://pytorch-lightning.readthedocs.io/en/stable/weights_loading.html#checkpoint-loading>`_
|
||||
- `Profile your code for speed/memory bottlenecks <https://pytorch-lightning.readthedocs.io/en/stable/profiler.html>`_
|
||||
- `Scale to massive compute clusters <https://pytorch-lightning.readthedocs.io/en/stable/slurm.html>`_
|
||||
- `Use multiple dataloaders per train/val/test loop <https://pytorch-lightning.readthedocs.io/en/stable/multiple_loaders.html>`_
|
||||
- `Use multiple optimizers to do Reinforcement learning or even GANs <https://pytorch-lightning.readthedocs.io/en/stable/optimizers.html?highlight=multiple%20optimizers#use-multiple-optimizers-like-gans>`_
|
||||
|
||||
Or read our :ref:`introduction-guide` to learn more!
|
||||
|
||||
-------------
|
||||
|
||||
Masterclass
|
||||
===========
|
||||
|
||||
Go pro by tunning in to our Masterclass! New episodes every week.
|
||||
|
||||
.. image:: _images/general/PTL101_youtube_thumbnail.jpg
|
||||
:width: 500
|
||||
:align: center
|
||||
:alt: Masterclass
|
||||
:target: https://www.youtube.com/playlist?list=PLaMu-SDt_RB5NUm67hU2pdE75j6KaIOv2
|
|
@ -11,7 +11,7 @@ PyTorch Lightning Documentation
|
|||
:name: start
|
||||
:caption: Start Here
|
||||
|
||||
new-project
|
||||
3_steps
|
||||
introduction_guide
|
||||
performance
|
||||
|
||||
|
|
|
@ -1,686 +0,0 @@
|
|||
.. testsetup:: *
|
||||
|
||||
from pytorch_lightning.core.lightning import LightningModule
|
||||
from pytorch_lightning.core.datamodule import LightningDataModule
|
||||
from pytorch_lightning.trainer.trainer import Trainer
|
||||
import os
|
||||
import torch
|
||||
from torch.nn import functional as F
|
||||
from torch.utils.data import DataLoader
|
||||
from torch.utils.data import DataLoader
|
||||
import pytorch_lightning as pl
|
||||
from torch.utils.data import random_split
|
||||
|
||||
.. _quick-start:
|
||||
|
||||
Quick Start
|
||||
===========
|
||||
|
||||
PyTorch Lightning is nothing more than organized PyTorch code.
|
||||
|
||||
Once you've organized it into a LightningModule, it automates most of the training for you.
|
||||
|
||||
Here's a 2 minute conversion guide for PyTorch projects:
|
||||
|
||||
.. raw:: html
|
||||
|
||||
<video width="100%" controls autoplay src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/pl_quick_start_full.m4v"></video>
|
||||
|
||||
----------
|
||||
|
||||
Step 1: Build LightningModule
|
||||
-----------------------------
|
||||
A lightningModule defines
|
||||
|
||||
- Train loop
|
||||
- Val loop
|
||||
- Test loop
|
||||
- Model + system architecture
|
||||
- Optimizer
|
||||
|
||||
.. code-block::
|
||||
|
||||
import os
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torchvision.datasets import MNIST
|
||||
from torchvision import transforms
|
||||
from torch.utils.data import DataLoader
|
||||
import pytorch_lightning as pl
|
||||
from torch.utils.data import random_split
|
||||
|
||||
class LitModel(pl.LightningModule):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.l1 = torch.nn.Linear(28 * 28, 10)
|
||||
|
||||
def forward(self, x):
|
||||
return torch.relu(self.l1(x.view(x.size(0), -1)))
|
||||
|
||||
def training_step(self, batch, batch_idx):
|
||||
x, y = batch
|
||||
y_hat = self(x)
|
||||
loss = F.cross_entropy(y_hat, y)
|
||||
return loss
|
||||
|
||||
def configure_optimizers(self):
|
||||
return torch.optim.Adam(self.parameters(), lr=0.0005)
|
||||
|
||||
----------
|
||||
|
||||
Step 2: Fit with a Trainer
|
||||
--------------------------
|
||||
The trainer calls each loop at the correct time as needed. It also ensures it all works
|
||||
well across any accelerator.
|
||||
|
||||
.. raw:: html
|
||||
|
||||
<video width="100%" controls autoplay src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/pt_trainer_mov.m4v"></video>
|
||||
|
||||
|
|
||||
|
||||
Here's an example of using the Trainer:
|
||||
|
||||
.. code-block::
|
||||
|
||||
# dataloader
|
||||
dataset = MNIST(os.getcwd(), download=True, transform=transforms.ToTensor())
|
||||
train_loader = DataLoader(dataset)
|
||||
|
||||
# init model
|
||||
model = LitModel()
|
||||
|
||||
# most basic trainer, uses good defaults (auto-tensorboard, checkpoints, logs, and more)
|
||||
trainer = pl.Trainer()
|
||||
trainer.fit(model, train_loader)
|
||||
|
||||
Using GPUs/TPUs
|
||||
^^^^^^^^^^^^^^^
|
||||
It's trivial to use GPUs or TPUs in Lightning. There's NO NEED to change your code, simply change the Trainer options.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
# train on 1, 2, 4, n GPUs
|
||||
Trainer(gpus=1)
|
||||
Trainer(gpus=2)
|
||||
Trainer(gpus=8, num_nodes=n)
|
||||
|
||||
# train on TPUs
|
||||
Trainer(tpu_cores=8)
|
||||
Trainer(tpu_cores=128)
|
||||
|
||||
# even half precision
|
||||
Trainer(gpus=2, precision=16)
|
||||
|
||||
The code above gives you the following for free:
|
||||
|
||||
- Automatic checkpoints
|
||||
- Automatic Tensorboard (or the logger of your choice)
|
||||
- Automatic CPU/GPU/TPU training
|
||||
- Automatic 16-bit precision
|
||||
|
||||
All of it 100% rigorously tested and benchmarked
|
||||
|
||||
--------------
|
||||
|
||||
Lightning under the hood
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
Lightning is designed for state of the art research ideas by researchers and research engineers from top labs.
|
||||
|
||||
A LightningModule handles advances cases by allowing you to override any critical part of training
|
||||
via hooks that are called on your LightningModule.
|
||||
|
||||
.. raw:: html
|
||||
|
||||
<video width="100%" controls autoplay src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/pt_callbacks_mov.m4v"></video>
|
||||
|
||||
----------------
|
||||
|
||||
Training loop under the hood
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
This is the training loop pseudocode that lightning does under the hood:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
# init model
|
||||
model = LitModel()
|
||||
|
||||
# enable training
|
||||
torch.set_grad_enabled(True)
|
||||
model.train()
|
||||
|
||||
# get data + optimizer
|
||||
train_dataloader = model.train_dataloader()
|
||||
optimizer = model.configure_optimizers()
|
||||
|
||||
for epoch in epochs:
|
||||
for batch in train_dataloader:
|
||||
# forward (TRAINING_STEP)
|
||||
loss = model.training_step(batch)
|
||||
|
||||
# backward
|
||||
loss.backward()
|
||||
|
||||
# apply and clear grads
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
|
||||
Main take-aways:
|
||||
|
||||
- Lightning sets .train() and enables gradients when entering the training loop.
|
||||
- Lightning iterates over the epochs automatically.
|
||||
- Lightning iterates the dataloaders automatically.
|
||||
- Training_step gives you full control of the main loop.
|
||||
- .backward(), .step(), .zero_grad() are called for you. BUT, you can override this if you need manual control.
|
||||
|
||||
----------
|
||||
|
||||
Adding a Validation loop
|
||||
------------------------
|
||||
To add an (optional) validation loop add the following function
|
||||
|
||||
.. testcode::
|
||||
|
||||
class LitModel(LightningModule):
|
||||
|
||||
def validation_step(self, batch, batch_idx):
|
||||
x, y = batch
|
||||
y_hat = self(x)
|
||||
loss = F.cross_entropy(y_hat, y)
|
||||
|
||||
result = pl.EvalResult(checkpoint_on=loss)
|
||||
result.log('val_loss', loss)
|
||||
return result
|
||||
|
||||
.. note:: EvalResult is a plain Dict, with convenience functions for logging
|
||||
|
||||
And now the trainer will call the validation loop automatically
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
# pass in the val dataloader to the trainer as well
|
||||
trainer.fit(
|
||||
model,
|
||||
train_dataloader,
|
||||
val_dataloader
|
||||
)
|
||||
|
||||
Validation loop under the hood
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
Under the hood in pseudocode, lightning does the following:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
# ...
|
||||
for batch in train_dataloader:
|
||||
loss = model.training_step()
|
||||
loss.backward()
|
||||
# ...
|
||||
|
||||
if validate_at_some_point:
|
||||
# disable grads + batchnorm + dropout
|
||||
torch.set_grad_enabled(False)
|
||||
model.eval()
|
||||
|
||||
val_outs = []
|
||||
for val_batch in model.val_dataloader:
|
||||
val_out = model.validation_step(val_batch)
|
||||
val_outs.append(val_out)
|
||||
model.validation_epoch_end(val_outs)
|
||||
|
||||
# enable grads + batchnorm + dropout
|
||||
torch.set_grad_enabled(True)
|
||||
model.train()
|
||||
|
||||
Lightning automatically:
|
||||
|
||||
- Enables gradients and sets model to train() in the train loop
|
||||
- Disables gradients and sets model to eval() in val loop
|
||||
- After val loop ends, enables gradients and sets model to train()
|
||||
|
||||
-------------
|
||||
|
||||
Adding a Test loop
|
||||
------------------
|
||||
You might also need an optional test loop
|
||||
|
||||
.. testcode::
|
||||
|
||||
class LitModel(LightningModule):
|
||||
|
||||
def test_step(self, batch, batch_idx):
|
||||
x, y = batch
|
||||
y_hat = self(x)
|
||||
loss = F.cross_entropy(y_hat, y)
|
||||
|
||||
result = pl.EvalResult()
|
||||
result.log('test_loss', loss)
|
||||
return result
|
||||
|
||||
|
||||
However, this time you need to specifically call test (this is done so you don't use the test set by mistake)
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
# OPTION 1:
|
||||
# test after fit
|
||||
trainer.fit(model)
|
||||
trainer.test(test_dataloaders=test_dataloader)
|
||||
|
||||
# OPTION 2:
|
||||
# test after loading weights
|
||||
model = LitModel.load_from_checkpoint(PATH)
|
||||
trainer = Trainer()
|
||||
trainer.test(test_dataloaders=test_dataloader)
|
||||
|
||||
Test loop under the hood
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
Under the hood, lightning does the following in (pseudocode):
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
# disable grads + batchnorm + dropout
|
||||
torch.set_grad_enabled(False)
|
||||
model.eval()
|
||||
|
||||
test_outs = []
|
||||
for test_batch in model.test_dataloader:
|
||||
test_out = model.test_step(val_batch)
|
||||
test_outs.append(test_out)
|
||||
|
||||
model.test_epoch_end(test_outs)
|
||||
|
||||
# enable grads + batchnorm + dropout
|
||||
torch.set_grad_enabled(True)
|
||||
model.train()
|
||||
|
||||
---------------
|
||||
|
||||
Data
|
||||
----
|
||||
Lightning operates on standard PyTorch Dataloaders (of any flavor). Use dataloaders in 3 ways.
|
||||
|
||||
Data in fit
|
||||
^^^^^^^^^^^
|
||||
Pass the dataloaders into `trainer.fit()`
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
trainer.fit(model, train_dataloader, val_dataloader)
|
||||
|
||||
Data in LightningModule
|
||||
^^^^^^^^^^^^^^^^^^^^^^^
|
||||
For fast research prototyping, it might be easier to link the model with the dataloaders.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
class LitModel(pl.LightningModule):
|
||||
|
||||
def train_dataloader(self):
|
||||
# your train transforms
|
||||
return DataLoader(YOUR_DATASET)
|
||||
|
||||
def val_dataloader(self):
|
||||
# your val transforms
|
||||
return DataLoader(YOUR_DATASET)
|
||||
|
||||
def test_dataloader(self):
|
||||
# your test transforms
|
||||
return DataLoader(YOUR_DATASET)
|
||||
|
||||
And fit like so:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
model = LitModel()
|
||||
trainer.fit(model)
|
||||
|
||||
DataModule
|
||||
^^^^^^^^^^
|
||||
A more reusable approach is to define a DataModule which is simply a collection of all 3 data splits but
|
||||
also captures:
|
||||
|
||||
- download instructions.
|
||||
- processing.
|
||||
- splitting.
|
||||
- etc...
|
||||
|
||||
Here's an illustration that explains how to refactor your code into reusable DataModules.
|
||||
|
||||
.. raw:: html
|
||||
|
||||
<video width="100%" controls autoplay src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/pt_dm_vid.m4v"></video>
|
||||
|
||||
|
|
||||
|
||||
And the matching code:
|
||||
|
||||
|
|
||||
|
||||
.. testcode:: python
|
||||
|
||||
class MNISTDataModule(LightningDataModule):
|
||||
|
||||
def __init__(self, batch_size=32):
|
||||
super().__init__()
|
||||
self.batch_size = batch_size
|
||||
|
||||
def prepare_data(self):
|
||||
# optional to support downloading only once when using multi-GPU or multi-TPU
|
||||
MNIST(os.getcwd(), train=True, download=True)
|
||||
MNIST(os.getcwd(), train=False, download=True)
|
||||
|
||||
def setup(self, stage):
|
||||
transform=transforms.Compose([
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize((0.1307,), (0.3081,))
|
||||
])
|
||||
|
||||
if stage == 'fit':
|
||||
mnist_train = MNIST(os.getcwd(), train=True, transform=transform)
|
||||
self.mnist_train, self.mnist_val = random_split(mnist_train, [55000, 5000])
|
||||
if stage == 'test':
|
||||
mnist_test = MNIST(os.getcwd(), train=False, transform=transform)
|
||||
self.mnist_test = MNIST(os.getcwd(), train=False, download=True)
|
||||
|
||||
def train_dataloader(self):
|
||||
mnist_train = DataLoader(self.mnist_train, batch_size=self.batch_size)
|
||||
return mnist_train
|
||||
|
||||
def val_dataloader(self):
|
||||
mnist_val = DataLoader(self.mnist_val, batch_size=self.batch_size)
|
||||
return mnist_val
|
||||
|
||||
def test_dataloader(self):
|
||||
mnist_test = DataLoader(mnist_test, batch_size=self.batch_size)
|
||||
return mnist_test
|
||||
|
||||
And train like so:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
dm = MNISTDataModule()
|
||||
trainer.fit(model, dm)
|
||||
|
||||
When doing distributed training, Datamodules have two optional arguments for granular control
|
||||
over download/prepare/splitting data
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
class MyDataModule(LightningDataModule):
|
||||
|
||||
def prepare_data(self):
|
||||
# called only on 1 GPU
|
||||
download()
|
||||
tokenize()
|
||||
etc()
|
||||
|
||||
def setup(self, stage=None):
|
||||
# called on every GPU (assigning state is OK)
|
||||
self.train = ...
|
||||
self.val = ...
|
||||
|
||||
def train_dataloader(self):
|
||||
# do more...
|
||||
return self.train
|
||||
|
||||
Building models based on Data
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
Datamodules are the recommended approach when building models based on the data.
|
||||
|
||||
First, define the information that you might need.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
class MyDataModule(LightningDataModule):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.train_dims = None
|
||||
self.vocab_size = 0
|
||||
|
||||
def prepare_data(self):
|
||||
download_dataset()
|
||||
tokenize()
|
||||
build_vocab()
|
||||
|
||||
def setup(self, stage=None):
|
||||
vocab = load_vocab
|
||||
self.vocab_size = len(vocab)
|
||||
|
||||
self.train, self.val, self.test = load_datasets()
|
||||
self.train_dims = self.train.next_batch.size()
|
||||
|
||||
def train_dataloader(self):
|
||||
transforms = ...
|
||||
return DataLoader(self.train, transforms)
|
||||
|
||||
def val_dataloader(self):
|
||||
transforms = ...
|
||||
return DataLoader(self.val, transforms)
|
||||
|
||||
def test_dataloader(self):
|
||||
transforms = ...
|
||||
return DataLoader(self.test, transforms)
|
||||
|
||||
Next, materialize the data and build your model
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
# build module
|
||||
dm = MyDataModule()
|
||||
dm.prepare_data()
|
||||
dm.setup()
|
||||
|
||||
# pass in the properties you want
|
||||
model = LitModel(image_width=dm.train_dims[0], vocab_length=dm.vocab_size)
|
||||
|
||||
# train
|
||||
trainer.fit(model, dm)
|
||||
|
||||
-----------------
|
||||
|
||||
Logging/progress bar
|
||||
--------------------
|
||||
|
||||
|
|
||||
|
||||
.. image:: /_images/mnist_imgs/mnist_tb.png
|
||||
:width: 300
|
||||
:align: center
|
||||
:alt: Example TB logs
|
||||
|
||||
|
|
||||
|
||||
Lightning has built-in logging to any of the supported loggers or progress bar.
|
||||
|
||||
Log in train loop
|
||||
^^^^^^^^^^^^^^^^^
|
||||
To log from the training loop use the `log` method in the `TrainResult`.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
def training_step(self, batch, batch_idx):
|
||||
loss = ...
|
||||
result = pl.TrainResult(minimize=loss)
|
||||
result.log('train_loss', loss)
|
||||
return result
|
||||
|
||||
The `TrainResult` gives you options for logging on every step and/or at the end of the epoch.
|
||||
It also allows logging to the progress bar.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
# equivalent
|
||||
result.log('train_loss', loss)
|
||||
result.log('train_loss', loss, prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
||||
|
||||
Then boot up your logger or tensorboard instance to view training logs
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
tensorboard --logdir ./lightning_logs
|
||||
|
||||
.. warning:: Refreshing the progress bar too frequently in Jupyter notebooks or Colab may freeze your UI.
|
||||
We recommend you set `Trainer(progress_bar_refresh_rate=10)`
|
||||
|
||||
Log in Val/Test loop
|
||||
^^^^^^^^^^^^^^^^^^^^
|
||||
To log from the validation or test loop use the `EvalResult`.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
def validation_step(self, batch, batch_idx):
|
||||
loss = ...
|
||||
result = pl.EvalResult()
|
||||
result.log_dict({'val_loss': loss, 'val_acc': acc})
|
||||
return result
|
||||
|
||||
Log to the progress bar
|
||||
^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
Epoch 1: 4%|▎ | 40/1095 [00:03<01:37, 10.84it/s, loss=4.501, v_num=10]
|
||||
|
||||
|
|
||||
|
||||
In addition to visual logging, you can log to the progress bar by setting `prog_bar` to True
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
def training_step(self, batch, batch_idx):
|
||||
loss = ...
|
||||
result = pl.TrainResult(loss)
|
||||
result.log('train_loss', loss, prog_bar=True)
|
||||
|
||||
-----------------
|
||||
|
||||
Advanced loop aggregation
|
||||
-------------------------
|
||||
For certain train/val/test loops, you may wish to do more than just logging. In this case,
|
||||
you can also implement `__epoch_end` which gives you the output for each step
|
||||
|
||||
Here's the motivating Pytorch example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
validation_step_outputs = []
|
||||
for batch_idx, batch in val_dataloader():
|
||||
out = validation_step(batch, batch_idx)
|
||||
validation_step_outputs.append(out)
|
||||
|
||||
validation_epoch_end(validation_step_outputs)
|
||||
|
||||
And the lightning equivalent
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
def validation_step(self, batch, batch_idx):
|
||||
loss = ...
|
||||
predictions = ...
|
||||
result = pl.EvalResult(checkpoint_on=loss)
|
||||
result.log('val_loss', loss)
|
||||
result.predictions = predictions
|
||||
|
||||
def validation_epoch_end(self, validation_step_outputs):
|
||||
all_val_losses = validation_step_outputs.val_loss
|
||||
all_predictions = validation_step_outputs.predictions
|
||||
|
||||
Why do you need Lightning?
|
||||
--------------------------
|
||||
The MAIN teakeaway points are:
|
||||
|
||||
- Lightning is for professional AI researchers/production teams.
|
||||
- Lightning is organized PyTorch. It is not an abstraction.
|
||||
- You STILL keep pure PyTorch.
|
||||
- You DON't lose any flexibility.
|
||||
- You can get rid of all of your boilerplate.
|
||||
- You make your code generalizable to any hardware.
|
||||
- Your code is now readable and easier to reproduce (ie: you help with the reproducibility crisis).
|
||||
- Your LightningModule is still just a pure PyTorch module.
|
||||
|
||||
Lightning is for you if
|
||||
^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
- You're a professional researcher/ml engineer working on non-trivial deep learning.
|
||||
- You already know PyTorch and are not a beginner.
|
||||
- You want to iterate through research much faster.
|
||||
- You want to put models into production much faster.
|
||||
- You need full control of all the details but don't need the boilerplate.
|
||||
- You want to leverage code written by hundreds of AI researchers, research engs and PhDs from the world's top AI labs.
|
||||
- You need GPUs, multi-node training, half-precision and TPUs.
|
||||
- You want research code that is rigorously tested (500+ tests) across CPUs/multi-GPUs/multi-TPUs on every pull-request.
|
||||
|
||||
Some more cool features
|
||||
^^^^^^^^^^^^^^^^^^^^^^^
|
||||
Here are (some) of the other things you can do with lightning:
|
||||
|
||||
- Automatic checkpointing.
|
||||
- Automatic early stopping.
|
||||
- Automatically overfit your model for a sanity test.
|
||||
- Automatic truncated-back-propagation-through-time.
|
||||
- Automatically scale your batch size.
|
||||
- Automatically attempt to find a good learning rate.
|
||||
- Add arbitrary callbacks
|
||||
- Hit every line of your code once to see if you have bugs (instead of waiting hours to crash on validation ;)
|
||||
- Load checkpoints directly from S3.
|
||||
- Move from CPUs to GPUs or TPUs without code changes.
|
||||
- Profile your code for speed/memory bottlenecks.
|
||||
- Scale to massive compute clusters.
|
||||
- Use multiple dataloaders per train/val/test loop.
|
||||
- Use multiple optimizers to do Reinforcement learning or even GANs.
|
||||
|
||||
Example:
|
||||
^^^^^^^^
|
||||
Without changing a SINGLE line of your code, you can now do the following with the above code
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
# train on TPUs using 16 bit precision with early stopping
|
||||
# using only half the training data and checking validation every quarter of a training epoch
|
||||
trainer = Trainer(
|
||||
tpu_cores=8,
|
||||
precision=16,
|
||||
early_stop_callback=True,
|
||||
limit_train_batches=0.5,
|
||||
val_check_interval=0.25
|
||||
)
|
||||
|
||||
# train on 256 GPUs
|
||||
trainer = Trainer(
|
||||
gpus=8,
|
||||
num_nodes=32
|
||||
)
|
||||
|
||||
# train on 1024 CPUs across 128 machines
|
||||
trainer = Trainer(
|
||||
num_processes=8,
|
||||
num_nodes=128
|
||||
)
|
||||
|
||||
And the best part is that your code is STILL just PyTorch... meaning you can do anything you
|
||||
would normally do.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
model = LitModel()
|
||||
model.eval()
|
||||
|
||||
y_hat = model(x)
|
||||
|
||||
model.anything_you_can_do_with_pytorch()
|
||||
|
||||
---------------
|
||||
|
||||
Masterclass
|
||||
-----------
|
||||
You can learn Lightning in-depth by watching our Masterclass.
|
||||
|
||||
.. image:: _images/general/PTL101_youtube_thumbnail.jpg
|
||||
:width: 500
|
||||
:align: center
|
||||
:alt: Masterclass
|
||||
:target: https://www.youtube.com/playlist?list=PLaMu-SDt_RB5NUm67hU2pdE75j6KaIOv2
|
Loading…
Reference in New Issue