ref: part 4 of #3733 (#3773)

* ref: part 4 of #3733

* ref: part 4 of #3733

* ref: part 4 of #3733

* ref: part 4 of #3733
This commit is contained in:
William Falcon 2020-10-01 11:26:58 -04:00 committed by GitHub
parent 128f9ee931
commit 622c5c3982
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 104 additions and 60 deletions

View File

@ -68,19 +68,6 @@ class DDPCPUSpawnBackend(Accelerator):
self.__recover_child_process_weights(model, best_path, last_path)
return results
def __recover_child_process_weights(self, model, best_path, last_path):
# transfer back the best path to the trainer
if self.trainer.checkpoint_callback:
self.trainer.checkpoint_callback.best_model_path = best_path
# todo, pass also best score
# load last weights
if last_path is not None and not self.trainer.testing:
ckpt = torch.load(last_path, map_location=lambda storage, loc: storage)
model.load_state_dict(ckpt)
self.trainer.model = model
def ddp_train(self, process_idx, mp_queue, model):
"""
Entry point for ddp
@ -95,9 +82,7 @@ class DDPCPUSpawnBackend(Accelerator):
self.trainer.progress_bar_callback.disable()
# determine which process we are and world size
self.trainer.local_rank = process_idx
self.trainer.global_rank = self.trainer.node_rank * self.trainer.num_processes + process_idx
self.trainer.world_size = self.trainer.num_nodes * self.trainer.num_processes
self.set_world_ranks(process_idx)
# set warning rank
rank_zero_only.rank = self.trainer.global_rank
@ -116,7 +101,7 @@ class DDPCPUSpawnBackend(Accelerator):
self.trainer.call_setup_hook(model)
# on world_size=0 let everyone know training is starting
if self.trainer.is_global_zero:
if self.trainer.is_global_zero and not torch.distributed.is_initialized():
log.info('-' * 100)
log.info(f'distributed_backend={self.trainer.distributed_backend}')
log.info(f'All DDP processes registered. Starting ddp with {self.trainer.world_size} processes')
@ -126,6 +111,9 @@ class DDPCPUSpawnBackend(Accelerator):
if self.trainer.sync_batchnorm:
model = model.configure_sync_batchnorm(model)
# move the model to the correct device
self.model_to_device(model, process_idx)
# CHOOSE OPTIMIZER
# allow for lr schedulers as well
self.setup_optimizers(model)
@ -137,7 +125,7 @@ class DDPCPUSpawnBackend(Accelerator):
model = self.trainer.precision_connector.connect(model)
# DDP spawn already spawned off each process... no need to do anything
device_ids = None
device_ids = self.get_device_ids()
# allow user to configure ddp
model = model.configure_ddp(model, device_ids)
@ -174,6 +162,7 @@ class DDPCPUSpawnBackend(Accelerator):
return output
def barrier(self, name: str = None):
if torch_distrib.is_initialized():
torch_distrib.barrier()
def broadcast(self, obj, src=0):
@ -186,6 +175,31 @@ class DDPCPUSpawnBackend(Accelerator):
should_stop = stop == self.trainer.world_size
return should_stop
def set_world_ranks(self, process_idx):
self.trainer.local_rank = process_idx
self.trainer.global_rank = self.trainer.node_rank * self.trainer.num_processes + process_idx
self.trainer.world_size = self.trainer.num_nodes * self.trainer.num_processes
def model_to_device(self, model, process_idx):
model.cpu()
def get_device_ids(self):
device_ids = None
return device_ids
def __recover_child_process_weights(self, model, best_path, last_path):
# transfer back the best path to the trainer
if self.trainer.checkpoint_callback:
self.trainer.checkpoint_callback.best_model_path = best_path
# todo, pass also best score
# load last weights
if last_path is not None and not self.trainer.testing:
ckpt = torch.load(last_path, map_location=lambda storage, loc: storage)
model.load_state_dict(ckpt)
self.trainer.model = model
def transfer_distrib_spawn_state_on_fit_end(self, model, mp_queue, results):
# track the best model path
best_model_path = None

View File

@ -0,0 +1,71 @@
import pytest
import torch
import tests.base.develop_pipelines as tpipes
import tests.base.develop_utils as tutils
from tests.base import EvalModelTemplate
from pytorch_lightning.core import memory
from pytorch_lightning.trainer import Trainer
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
def test_multi_gpu_early_stop_ddp_spawn(tmpdir):
"""Make sure DDP works. with early stopping"""
tutils.set_random_master_port()
trainer_options = dict(
default_root_dir=tmpdir,
early_stop_callback=True,
max_epochs=50,
limit_train_batches=10,
limit_val_batches=10,
gpus=[0, 1],
distributed_backend='ddp_spawn',
)
model = EvalModelTemplate()
tpipes.run_model_test(trainer_options, model)
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
def test_multi_gpu_model_ddp_spawn(tmpdir):
tutils.set_random_master_port()
trainer_options = dict(
default_root_dir=tmpdir,
max_epochs=1,
limit_train_batches=10,
limit_val_batches=10,
gpus=[0, 1],
distributed_backend='ddp_spawn',
progress_bar_refresh_rate=0
)
model = EvalModelTemplate()
tpipes.run_model_test(trainer_options, model)
# test memory helper functions
memory.get_memory_profile('min_max')
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
def test_ddp_all_dataloaders_passed_to_fit(tmpdir):
"""Make sure DDP works with dataloaders passed to fit()"""
tutils.set_random_master_port()
model = EvalModelTemplate()
fit_options = dict(train_dataloader=model.train_dataloader(),
val_dataloaders=model.val_dataloader())
trainer = Trainer(
default_root_dir=tmpdir,
progress_bar_refresh_rate=0,
max_epochs=1,
limit_train_batches=0.2,
limit_val_batches=0.2,
gpus=[0, 1],
distributed_backend='ddp_spawn'
)
result = trainer.fit(model, **fit_options)
assert result == 1, "DDP doesn't work with dataloaders passed to fit()."

View File

@ -62,25 +62,6 @@ def test_multi_gpu_none_backend(tmpdir):
tpipes.run_model_test(trainer_options, model)
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
def test_multi_gpu_early_stop_ddp_spawn(tmpdir):
"""Make sure DDP works. with early stopping"""
tutils.set_random_master_port()
trainer_options = dict(
default_root_dir=tmpdir,
early_stop_callback=True,
max_epochs=50,
limit_train_batches=10,
limit_val_batches=10,
gpus=[0, 1],
distributed_backend='ddp_spawn',
)
model = EvalModelTemplate()
tpipes.run_model_test(trainer_options, model)
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
def test_multi_gpu_model_dp(tmpdir):
tutils.set_random_master_port()
@ -131,28 +112,6 @@ def test_multi_gpu_model_ddp(tmpdir, cli_args, variation):
pytest.fail(err)
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
def test_multi_gpu_model_ddp_spawn(tmpdir):
tutils.set_random_master_port()
trainer_options = dict(
default_root_dir=tmpdir,
max_epochs=1,
limit_train_batches=10,
limit_val_batches=10,
gpus=[0, 1],
distributed_backend='ddp_spawn',
progress_bar_refresh_rate=0
)
model = EvalModelTemplate()
tpipes.run_model_test(trainer_options, model)
# test memory helper functions
memory.get_memory_profile('min_max')
@pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine")
@pytest.mark.parametrize('gpus', [1, [0], [1]])
def test_single_gpu_model(tmpdir, gpus):