diff --git a/tests/trainer/test_trainer.py b/tests/trainer/test_trainer.py index b2860cbe32..d27a701cfa 100644 --- a/tests/trainer/test_trainer.py +++ b/tests/trainer/test_trainer.py @@ -23,6 +23,7 @@ from pytorch_lightning.loggers import TensorBoardLogger from pytorch_lightning.trainer.logging import TrainerLoggingMixin from pytorch_lightning.utilities.cloud_io import load as pl_load from pytorch_lightning.utilities.exceptions import MisconfigurationException +from pytorch_lightning.utilities import NATIVE_AMP_AVALAIBLE from tests.base import EvalModelTemplate @@ -867,6 +868,36 @@ def test_gradient_clipping(tmpdir): trainer.fit(model) +@pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine") +@pytest.mark.skipif(not NATIVE_AMP_AVALAIBLE, reason="test requires native AMP.") +def test_gradient_clipping_fp16(tmpdir): + """ + Test gradient clipping with fp16 + """ + + model = EvalModelTemplate() + + # test that gradient is clipped correctly + def _optimizer_step(*args, **kwargs): + parameters = model.parameters() + grad_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), 2) for p in parameters]), 2) + assert (grad_norm - 1.0).abs() < 0.01, "Gradient norm != 1.0: {grad_norm}".format(grad_norm=grad_norm) + + trainer = Trainer( + max_steps=1, + max_epochs=1, + precision=16, + gpus=1, + gradient_clip_val=1.0, + default_root_dir=tmpdir, + ) + + # for the test + model.optimizer_step = _optimizer_step + model.prev_called_batch_idx = 0 + + trainer.fit(model) + def test_gpu_choice(tmpdir): trainer_options = dict( default_root_dir=tmpdir,