diff --git a/tests/profiler/test_profiler.py b/tests/profiler/test_profiler.py index e047e55fb2..150ad2d79c 100644 --- a/tests/profiler/test_profiler.py +++ b/tests/profiler/test_profiler.py @@ -168,7 +168,13 @@ def test_simple_profiler_distributed_files(tmpdir): profiler = SimpleProfiler(dirpath=tmpdir, filename="profiler") model = BoringModel() trainer = Trainer( - default_root_dir=tmpdir, fast_dev_run=2, strategy="ddp_spawn", num_processes=2, profiler=profiler, logger=False + default_root_dir=tmpdir, + fast_dev_run=2, + strategy="ddp_spawn", + accelerator="cpu", + devices=2, + profiler=profiler, + logger=False, ) trainer.fit(model) trainer.validate(model) @@ -307,7 +313,8 @@ def test_pytorch_profiler_trainer_ddp(tmpdir, pytorch_profiler): limit_val_batches=5, profiler=pytorch_profiler, strategy="ddp", - gpus=2, + accelerator="gpu", + devices=2, ) trainer.fit(model) expected = {"[Strategy]DDPStrategy.validation_step"} @@ -429,7 +436,7 @@ def test_pytorch_profiler_nested_emit_nvtx(tmpdir): profiler = PyTorchProfiler(use_cuda=True, emit_nvtx=True) model = BoringModel() - trainer = Trainer(fast_dev_run=True, profiler=profiler, gpus=1) + trainer = Trainer(fast_dev_run=True, profiler=profiler, accelerator="gpu", devices=1) trainer.fit(model) diff --git a/tests/profiler/test_xla_profiler.py b/tests/profiler/test_xla_profiler.py index 7f460ea11d..9a0efbd6a7 100644 --- a/tests/profiler/test_xla_profiler.py +++ b/tests/profiler/test_xla_profiler.py @@ -33,7 +33,7 @@ if _TPU_AVAILABLE: def test_xla_profiler_instance(tmpdir): model = BoringModel() - trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=True, profiler="xla", tpu_cores=8) + trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=True, profiler="xla", accelerator="tpu", devices=8) assert isinstance(trainer.profiler, XLAProfiler) trainer.fit(model) @@ -48,7 +48,7 @@ def test_xla_profiler_prog_capture(tmpdir): def train_worker(): model = BoringModel() - trainer = Trainer(default_root_dir=tmpdir, max_epochs=4, profiler="xla", tpu_cores=8) + trainer = Trainer(default_root_dir=tmpdir, max_epochs=4, profiler="xla", accelerator="tpu", devices=8) trainer.fit(model)