Add tests for GCS filesystem (#7946)
This commit is contained in:
parent
ced2c94a3e
commit
5cef9772a4
|
@ -4,7 +4,8 @@ matplotlib>3.1
|
|||
horovod>=0.21.2 # no need to install with [pytorch] as pytorch is already installed
|
||||
omegaconf>=2.0.1
|
||||
torchtext>=0.5
|
||||
# onnx>=1.7.0
|
||||
onnx>=1.7.0
|
||||
onnxruntime>=1.3.0
|
||||
hydra-core>=1.0
|
||||
jsonargparse[signatures]>=3.15.0
|
||||
gcsfs>=2021.5.0
|
||||
|
|
|
@ -0,0 +1,106 @@
|
|||
# Copyright The PyTorch Lightning team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import os
|
||||
|
||||
import fsspec
|
||||
import pytest
|
||||
|
||||
from pytorch_lightning import Trainer
|
||||
from pytorch_lightning.callbacks import ModelCheckpoint
|
||||
from pytorch_lightning.loggers import TensorBoardLogger
|
||||
from tests.helpers import BoringModel
|
||||
|
||||
GCS_BUCKET_PATH = os.getenv("GCS_BUCKET_PATH", None)
|
||||
_GCS_BUCKET_PATH_AVAILABLE = GCS_BUCKET_PATH is not None
|
||||
|
||||
gcs_fs = fsspec.filesystem("gs") if _GCS_BUCKET_PATH_AVAILABLE else None
|
||||
|
||||
|
||||
def gcs_path_join(dir_path):
|
||||
return GCS_BUCKET_PATH + str(dir_path)
|
||||
|
||||
|
||||
def gcs_rm_dir(dir_path):
|
||||
gcs_fs.rm(dir_path, recursive=True)
|
||||
return True
|
||||
|
||||
|
||||
@pytest.mark.skipif(not _GCS_BUCKET_PATH_AVAILABLE, reason="Test requires GCS bucket path")
|
||||
def test_gcs_model_checkpoint_contents(tmpdir):
|
||||
dir_path = gcs_path_join(tmpdir)
|
||||
|
||||
model = BoringModel()
|
||||
checkpoint_callback = ModelCheckpoint(dirpath=dir_path, save_top_k=-1, save_last=True)
|
||||
epochs = 2
|
||||
|
||||
trainer = Trainer(
|
||||
default_root_dir=dir_path,
|
||||
callbacks=[checkpoint_callback],
|
||||
limit_train_batches=10,
|
||||
limit_val_batches=10,
|
||||
max_epochs=2,
|
||||
logger=False,
|
||||
)
|
||||
|
||||
trainer.fit(model)
|
||||
|
||||
assert checkpoint_callback.best_model_path == os.path.join(dir_path, 'epoch=1-step=19.ckpt')
|
||||
assert checkpoint_callback.last_model_path == os.path.join(dir_path, 'last.ckpt')
|
||||
|
||||
expected = [f'epoch={i}-step={j}.ckpt' for i, j in zip(range(epochs), [9, 19])]
|
||||
expected.append('last.ckpt')
|
||||
|
||||
gcs_ckpt_paths = [os.path.basename(path) for path in gcs_fs.listdir(dir_path, detail=False)]
|
||||
assert gcs_ckpt_paths == expected
|
||||
|
||||
assert gcs_rm_dir(dir_path)
|
||||
|
||||
|
||||
@pytest.mark.skipif(not _GCS_BUCKET_PATH_AVAILABLE, reason="Test requires GCS bucket path")
|
||||
def test_gcs_logging(tmpdir):
|
||||
dir_path = gcs_path_join(tmpdir)
|
||||
|
||||
name = "tb_versioning"
|
||||
log_dir = os.path.join(dir_path, name)
|
||||
gcs_fs.mkdir(log_dir)
|
||||
expected_version = "101"
|
||||
|
||||
logger = TensorBoardLogger(save_dir=dir_path, name=name, version=expected_version)
|
||||
logger.log_hyperparams({"a": 1, "b": 2, 123: 3, 3.5: 4, 5j: 5})
|
||||
|
||||
assert logger.version == expected_version
|
||||
|
||||
gcs_paths = [os.path.basename(path) for path in gcs_fs.listdir(log_dir, detail=False)]
|
||||
gcs_paths = list(filter(lambda x: len(x) > 0, gcs_paths))
|
||||
|
||||
assert gcs_paths == [expected_version]
|
||||
assert gcs_fs.listdir(os.path.join(log_dir, expected_version), detail=False)
|
||||
|
||||
assert gcs_rm_dir(dir_path)
|
||||
|
||||
|
||||
@pytest.mark.skipif(not _GCS_BUCKET_PATH_AVAILABLE, reason="Test requires GCS bucket path")
|
||||
def test_gcs_save_hparams_to_yaml_file(tmpdir):
|
||||
dir_path = gcs_path_join(tmpdir)
|
||||
|
||||
model = BoringModel()
|
||||
logger = TensorBoardLogger(save_dir=dir_path, default_hp_metric=False)
|
||||
trainer = Trainer(max_steps=1, default_root_dir=dir_path, logger=logger)
|
||||
assert trainer.log_dir == trainer.logger.log_dir
|
||||
trainer.fit(model)
|
||||
|
||||
hparams_file = "hparams.yaml"
|
||||
assert gcs_fs.isfile(os.path.join(trainer.log_dir, hparams_file))
|
||||
|
||||
assert gcs_rm_dir(dir_path)
|
Loading…
Reference in New Issue