* temporary drop metrics tests while speeding them up

* cov

* cov

* docs
This commit is contained in:
William Falcon 2020-10-11 10:21:53 -04:00 committed by GitHub
parent 1dbc6ffbc1
commit 5b645d713e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 91 additions and 73 deletions

View File

@ -38,12 +38,18 @@ exclude_lines =
rank_zero_warn rank_zero_warn
# TODO: figure out how to get codecov to pick up the test results on these backends # TODO: figure out how to get codecov to pick up the test results on these backends
# The actual coverage for each is 90%+ # The actual coverage for each is 90%+
# *metrics (94%+) are temporarily removed from testing while tests speed up
omit = omit =
pytorch_lightning/accelerators/ddp_*.py pytorch_lightning/accelerators/ddp_*.py
pytorch_lightning/accelerators/ddp2_*.py pytorch_lightning/accelerators/ddp2_*.py
pytorch_lightning/accelerators/dp_*.py pytorch_lightning/accelerators/dp_*.py
pytorch_lightning/accelerators/tpu_*.py pytorch_lightning/accelerators/tpu_*.py
pytorch_lightning/cluster_environments/*.py pytorch_lightning/cluster_environments/*.py
pytorch_lightning/overrides/data_parallel.py
pytorch_lightning/metrics
pytorch_lightning/utilities/xla_device_utils.py
pytorch_lightning/utilities/distributed.py
pytorch_lightning/tuner/auto_gpu_select.py
[flake8] [flake8]
# TODO: this should be 88 or 100 according PEP8 # TODO: this should be 88 or 100 according PEP8

85
tests/backends/test_dp.py Normal file
View File

@ -0,0 +1,85 @@
import pytest
import torch
import tests.base.develop_pipelines as tpipes
import tests.base.develop_utils as tutils
from pytorch_lightning.callbacks import EarlyStopping
from pytorch_lightning.core import memory
from tests.base import EvalModelTemplate
import pytorch_lightning as pl
PRETEND_N_OF_GPUS = 16
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
def test_multi_gpu_early_stop_dp(tmpdir):
"""Make sure DDP works. with early stopping"""
tutils.set_random_master_port()
trainer_options = dict(
default_root_dir=tmpdir,
callbacks=[EarlyStopping()],
max_epochs=50,
limit_train_batches=10,
limit_val_batches=10,
gpus=[0, 1],
distributed_backend='dp',
)
model = EvalModelTemplate()
tpipes.run_model_test(trainer_options, model)
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
def test_multi_gpu_model_dp(tmpdir):
tutils.set_random_master_port()
trainer_options = dict(
default_root_dir=tmpdir,
max_epochs=1,
limit_train_batches=10,
limit_val_batches=10,
gpus=[0, 1],
distributed_backend='dp',
progress_bar_refresh_rate=0
)
model = EvalModelTemplate()
tpipes.run_model_test(trainer_options, model)
# test memory helper functions
memory.get_memory_profile('min_max')
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
def test_dp_test(tmpdir):
tutils.set_random_master_port()
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'
model = EvalModelTemplate()
trainer = pl.Trainer(
default_root_dir=tmpdir,
max_epochs=2,
limit_train_batches=10,
limit_val_batches=10,
gpus=[0, 1],
distributed_backend='dp',
)
trainer.fit(model)
assert 'ckpt' in trainer.checkpoint_callback.best_model_path
results = trainer.test()
assert 'test_acc' in results[0]
old_weights = model.c_d1.weight.clone().detach().cpu()
results = trainer.test(model)
assert 'test_acc' in results[0]
# make sure weights didn't change
new_weights = model.c_d1.weight.clone().detach().cpu()
assert torch.all(torch.eq(old_weights, new_weights))

View File

@ -19,25 +19,6 @@ from pytorch_lightning.accelerators.gpu_accelerator import GPUAccelerator
PRETEND_N_OF_GPUS = 16 PRETEND_N_OF_GPUS = 16
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
def test_multi_gpu_early_stop_dp(tmpdir):
"""Make sure DDP works. with early stopping"""
tutils.set_random_master_port()
trainer_options = dict(
default_root_dir=tmpdir,
callbacks=[EarlyStopping()],
max_epochs=50,
limit_train_batches=10,
limit_val_batches=10,
gpus=[0, 1],
distributed_backend='dp',
)
model = EvalModelTemplate()
tpipes.run_model_test(trainer_options, model)
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine") @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
def test_multi_gpu_none_backend(tmpdir): def test_multi_gpu_none_backend(tmpdir):
"""Make sure when using multiple GPUs the user can't use `distributed_backend = None`.""" """Make sure when using multiple GPUs the user can't use `distributed_backend = None`."""
@ -56,28 +37,6 @@ def test_multi_gpu_none_backend(tmpdir):
tpipes.run_model_test(trainer_options, model) tpipes.run_model_test(trainer_options, model)
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
def test_multi_gpu_model_dp(tmpdir):
tutils.set_random_master_port()
trainer_options = dict(
default_root_dir=tmpdir,
max_epochs=1,
limit_train_batches=10,
limit_val_batches=10,
gpus=[0, 1],
distributed_backend='dp',
progress_bar_refresh_rate=0
)
model = EvalModelTemplate()
tpipes.run_model_test(trainer_options, model)
# test memory helper functions
memory.get_memory_profile('min_max')
@pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine") @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine")
@pytest.mark.parametrize('gpus', [1, [0], [1]]) @pytest.mark.parametrize('gpus', [1, [0], [1]])
def test_single_gpu_model(tmpdir, gpus): def test_single_gpu_model(tmpdir, gpus):

View File

@ -34,38 +34,6 @@ def test_single_gpu_test(tmpdir):
assert torch.all(torch.eq(old_weights, new_weights)) assert torch.all(torch.eq(old_weights, new_weights))
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
def test_dp_test(tmpdir):
tutils.set_random_master_port()
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'
model = EvalModelTemplate()
trainer = pl.Trainer(
default_root_dir=tmpdir,
max_epochs=2,
limit_train_batches=10,
limit_val_batches=10,
gpus=[0, 1],
distributed_backend='dp',
)
trainer.fit(model)
assert 'ckpt' in trainer.checkpoint_callback.best_model_path
results = trainer.test()
assert 'test_acc' in results[0]
old_weights = model.c_d1.weight.clone().detach().cpu()
results = trainer.test(model)
assert 'test_acc' in results[0]
# make sure weights didn't change
new_weights = model.c_d1.weight.clone().detach().cpu()
assert torch.all(torch.eq(old_weights, new_weights))
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine") @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
def test_ddp_spawn_test(tmpdir): def test_ddp_spawn_test(tmpdir):
tutils.set_random_master_port() tutils.set_random_master_port()