diff --git a/docs/source/ecosystem/bolts.rst b/docs/source/ecosystem/bolts.rst
index 7b75f7aa1c..77604a53b1 100644
--- a/docs/source/ecosystem/bolts.rst
+++ b/docs/source/ecosystem/bolts.rst
@@ -1,6 +1,7 @@
-Bolts
-=====
-`PyTorch Lightning Bolts `_, is our official collection
+Lightning Bolts
+===============
+
+`PyTorch Lightning Bolts `_, is our official collection
of prebuilt models across many research domains.
.. code-block:: bash
diff --git a/docs/source/ecosystem/ecosystem-ci.rst b/docs/source/ecosystem/ecosystem-ci.rst
new file mode 100644
index 0000000000..4c5c2e32b9
--- /dev/null
+++ b/docs/source/ecosystem/ecosystem-ci.rst
@@ -0,0 +1,28 @@
+Ecosystem CI
+============
+
+`Ecosystem CI `_ automates issue discovery for your projects against Lightning nightly and releases.
+It is a lightweight repository that provides easy configuration of Continues Integration running on CPUs and GPUs.
+Any user who wants to keep their project aligned with current and future Lightning releases can use the EcoSystem CI to configure their integrations.
+Read more: `Stay Ahead of Breaking Changes with the New Lightning Ecosystem CI `_
+
+--------------
+
+***********************
+Integrate a New Project
+***********************
+
+Follow the instructions below to add a new project to the PyTorch Lightning ecosystem.
+
+1. Fork the ecosystem CI repository to be able to create a `new Pull Request `_ and work within a specific branch.
+2. Create a new config file in ``configs/`` folder and call it ``.yaml``.
+3. Define runtime for CPU and link the config for GPU:
+ For CPU integrations, list OS and Python version combination to be running with GitHub actions.
+ For GPU integrations, you only add the path to the config (OS/Linux and Python version is fixed) to be running with Azure pipelines.
+4. Add a Contact to the ``.github/CODEOWNERS`` list for your organization folder or just a single project.
+5. Create a Draft PR with all mentioned requirements.
+6. Join our `Slack `_ (Optional) channel ``#alerts-ecosystem-ci`` to be notified if your project is breaking.
+
+
+To learn more about Ecosystem CI, please refer to the `Ecosystem CI repo `_.
+Also, note that some particular implementation details described above may evolve over time.
diff --git a/docs/source/ecosystem/flash.rst b/docs/source/ecosystem/flash.rst
new file mode 100644
index 0000000000..24d91115e1
--- /dev/null
+++ b/docs/source/ecosystem/flash.rst
@@ -0,0 +1,76 @@
+Lightning Flash
+===============
+
+`Lightning Flash `_ is a high-level deep learning framework for fast prototyping, baselining, fine-tuning, and solving deep learning problems.
+Flash makes complex AI recipes for over 15 tasks across 7 data domains accessible to all.
+It is built for beginners with a simple API that requires very little deep learning background, and for data scientists, Kagglers, applied ML practitioners, and deep learning researchers that
+want a quick way to get a deep learning baseline with advanced features PyTorch Lightning offers.
+
+.. code-block:: bash
+
+ pip install lightning-flash
+
+-----------------
+
+*********************************
+Using Lightning Flash in 3 Steps!
+*********************************
+
+1. Load your Data
+-----------------
+
+All data loading in Flash is performed via a ``from_*`` classmethod of a ``DataModule``.
+Which ``DataModule`` to use and which ``from_*`` methods are available depends on the task you want to perform.
+For example, for image segmentation where your data is stored in folders, you would use the ``SemanticSegmentationData``'s `from_folders `_ method:
+
+.. code-block:: python
+
+ from flash.image import SemanticSegmentationData
+
+ dm = SemanticSegmentationData.from_folders(
+ train_folder="data/CameraRGB",
+ train_target_folder="data/CameraSeg",
+ val_split=0.1,
+ image_size=(256, 256),
+ num_classes=21,
+ )
+
+------------
+
+2. Configure your Model
+-----------------------
+
+Our tasks come loaded with pre-trained backbones and (where applicable) heads.
+You can view the available backbones to use with your task using `available_backbones `_.
+Once you've chosen, create the model:
+
+.. code-block:: python
+
+ from flash.image import SemanticSegmentation
+
+ print(SemanticSegmentation.available_heads())
+ # ['deeplabv3', 'deeplabv3plus', 'fpn', ..., 'unetplusplus']
+
+ print(SemanticSegmentation.available_backbones("fpn"))
+ # ['densenet121', ..., 'xception'] # + 113 models
+
+ print(SemanticSegmentation.available_pretrained_weights("efficientnet-b0"))
+ # ['imagenet', 'advprop']
+
+ model = SemanticSegmentation(head="fpn", backbone="efficientnet-b0", pretrained="advprop", num_classes=dm.num_classes)
+
+------------
+
+3. Finetune!
+------------
+
+.. code-block:: python
+
+ from flash import Trainer
+
+ trainer = Trainer(max_epochs=3)
+ trainer.finetune(model, datamodule=datamodule, strategy="freeze")
+ trainer.save_checkpoint("semantic_segmentation_model.pt")
+
+
+To learn more about Lightning Flash, please refer to the `Lightning Flash documentation `_.
diff --git a/docs/source/ecosystem/metrics.rst b/docs/source/ecosystem/metrics.rst
new file mode 100644
index 0000000000..15378fa217
--- /dev/null
+++ b/docs/source/ecosystem/metrics.rst
@@ -0,0 +1,91 @@
+TorchMetrics
+============
+
+`TorchMetrics `_ is a collection of machine learning metrics for distributed,
+scalable PyTorch models and an easy-to-use API to create custom metrics. It has a collection of 60+ PyTorch metrics implementations and
+is rigorously tested for all edge cases.
+
+.. code-block:: bash
+
+ pip install torchmetrics
+
+In TorchMetrics, we offer the following benefits:
+
+- A standardized interface to increase reproducibility
+- Reduced Boilerplate
+- Distributed-training compatible
+- Rigorously tested
+- Automatic accumulation over batches
+- Automatic synchronization across multiple devices
+
+-----------------
+
+Example 1: Functional Metrics
+-----------------------------
+
+Below is a simple example for calculating the accuracy using the functional interface:
+
+.. code-block:: python
+
+ import torch
+ import torchmetrics
+
+ # simulate a classification problem
+ preds = torch.randn(10, 5).softmax(dim=-1)
+ target = torch.randint(5, (10,))
+
+ acc = torchmetrics.functional.accuracy(preds, target)
+
+------------
+
+Example 2: Module Metrics
+-------------------------
+
+The example below shows how to use the class-based interface:
+
+.. code-block:: python
+
+ import torch
+ import torchmetrics
+
+ # initialize metric
+ metric = torchmetrics.Accuracy()
+
+ n_batches = 10
+ for i in range(n_batches):
+ # simulate a classification problem
+ preds = torch.randn(10, 5).softmax(dim=-1)
+ target = torch.randint(5, (10,))
+ # metric on current batch
+ acc = metric(preds, target)
+ print(f"Accuracy on batch {i}: {acc}")
+
+ # metric on all batches using custom accumulation
+ acc = metric.compute()
+ print(f"Accuracy on all data: {acc}")
+
+ # Reseting internal state such that metric ready for new data
+ metric.reset()
+
+------------
+
+Example 3: TorchMetrics with Lightning
+--------------------------------------
+
+The example below shows how to use a metric in your :doc:`LightningModule <../common/lightning_module>`:
+
+.. code-block:: python
+
+ class MyModel(LightningModule):
+ def __init__(self):
+ ...
+ self.accuracy = torchmetrics.Accuracy()
+
+ def training_step(self, batch, batch_idx):
+ x, y = batch
+ preds = self(x)
+ ...
+ # log step metric
+ self.accuracy(preds, y)
+ self.log("train_acc_step", self.accuracy, on_epoch=True)
+ ...
diff --git a/docs/source/ecosystem/transformers.rst b/docs/source/ecosystem/transformers.rst
new file mode 100644
index 0000000000..bad06d65e6
--- /dev/null
+++ b/docs/source/ecosystem/transformers.rst
@@ -0,0 +1,45 @@
+Lightning Transformers
+======================
+
+`Lightning Transformers `_ offers a flexible interface for training and fine-tuning SOTA Transformer models
+using the :doc:`PyTorch Lightning Trainer <../common/trainer>`.
+
+.. code-block:: bash
+
+ pip install lightning-transformers
+
+In Lightning Transformers, we offer the following benefits:
+
+- Powered by `PyTorch Lightning `_ - Accelerators, custom Callbacks, Loggers, and high performance scaling with minimal changes.
+- Backed by `HuggingFace Transformers `_ models and datasets, spanning multiple modalities and tasks within NLP/Audio and Vision.
+- Task Abstraction for Rapid Research & Experimentation - Build your own custom transformer tasks across all modalities with little friction.
+- Powerful config composition backed by `Hydra `_ - simply swap out models, optimizers, schedulers task, and many more configurations without touching the code.
+- Seamless Memory and Speed Optimizations - Out-of-the-box training optimizations such as `DeepSpeed ZeRO `_ or `FairScale Sharded Training `_ with no code changes.
+
+-----------------
+
+Using Lightning-Transformers
+----------------------------
+
+Lightning Transformers has a collection of tasks for common NLP problems such as `language_modeling `_,
+`translation `_ and more. To use, simply:
+
+1. Pick a task to train (passed to ``train.py`` as ``task=``)
+
+2. Pick a dataset (passed to ``train.py`` as ``dataset=``)
+
+3. Customize the backbone, optimizer, or any component within the config
+
+4. Add any :doc:`Lightning supported parameters and optimizations <../common/trainer>`
+
+.. code-block:: bash
+
+ python train.py \
+ task= \
+ dataset=
+ backbone.pretrained_model_name_or_path= # Optionally change the HF backbone
+ optimizer= # Optionally specify optimizer (Default AdamW)
+ trainer. # Optionally specify Lightning trainer arguments
+
+
+To learn more about Lightning Transformers, please refer to the `Lightning Transformers documentation `_.
diff --git a/docs/source/index.rst b/docs/source/index.rst
index 68bd904776..0646ae2d35 100644
--- a/docs/source/index.rst
+++ b/docs/source/index.rst
@@ -110,10 +110,14 @@ PyTorch Lightning
.. toctree::
:maxdepth: 1
- :name: Bolts
- :caption: Bolts
+ :name: Lightning Ecosystem
+ :caption: Lightning Ecosystem
+ ecosystem/metrics
+ ecosystem/flash
ecosystem/bolts
+ ecosystem/transformers
+ ecosystem/ecosystem-ci
.. toctree::
:maxdepth: 1