Implement TensorboardLogger (#607)

* Implement TensorboardLogger

* Pass default_save_path to trainers

* Update tensorboard.py
This commit is contained in:
Nic Eggert 2019-12-07 22:25:37 -06:00 committed by William Falcon
parent 2baa80d626
commit 5329c72cb0
3 changed files with 201 additions and 1 deletions

View File

@ -168,6 +168,8 @@ Every k batches, lightning will write the new logs to disk
from os import environ
from .base import LightningLoggerBase, rank_zero_only
from .tensorboard import TensorboardLogger
try:
from .test_tube import TestTubeLogger
except ImportError:

View File

@ -0,0 +1,102 @@
import os
from warnings import warn
import torch
from pkg_resources import parse_version
from torch.utils.tensorboard import SummaryWriter
from .base import LightningLoggerBase, rank_zero_only
class TensorboardLogger(LightningLoggerBase):
r"""Log to local file system in Tensorboard format
Implemented using :class:`torch.utils.tensorboard.SummaryWriter`. Logs are saved to
`os.path.join(save_dir, name, version)`
:example:
.. code-block:: python
logger = TensorboardLogger("tb_logs", name="my_model")
trainer = Trainer(logger=logger)
trainer.train(model)
:param str save_dir: Save directory
:param str name: Experiment name. Defaults to "default".
:param int version: Experiment version. If version is not specified the logger inspects the save
directory for existing versions, then automatically assigns the next available version.
:param \**kwargs: Other arguments are passed directly to the :class:`SummaryWriter` constructor.
"""
def __init__(self, save_dir, name="default", version=None, **kwargs):
super().__init__()
self.save_dir = save_dir
self._name = name
self._version = version if version is not None else None
self._experiment = None
self.kwargs = kwargs
@property
def experiment(self):
"""The underlying :class:`torch.utils.tensorboard.SummaryWriter`.
:rtype: torch.utils.tensorboard.SummaryWriter
"""
if self._experiment is not None:
return self._experiment
root_dir = os.path.join(self.save_dir, self.name)
os.makedirs(root_dir, exist_ok=True)
log_dir = os.path.join(root_dir, str(self.version))
self._experiment = SummaryWriter(log_dir=log_dir, **self.kwargs)
return self._experiment
@rank_zero_only
def log_hyperparams(self, params):
if parse_version(torch.__version__) < parse_version("1.3.0"):
warn(
f"Hyperparameter logging is not available for Torch version {torch.__version__}. "
"Skipping log_hyperparams. Upgrade to Torch 1.3.0 or above to enable "
"hyperparameter logging"
)
return
self.experiment.add_hparams(hparam_dict=vars(params))
@rank_zero_only
def log_metrics(self, metrics, step_idx=None):
for k, v in metrics.items():
if isinstance(v, torch.Tensor):
v = v.item()
self.experiment.add_scalar(k, v, step_idx)
@rank_zero_only
def save(self):
self.experiment.flush()
@rank_zero_only
def finalize(self, status):
self.save()
@property
def name(self):
return self._name
@property
def version(self):
if self._version is None:
self._version = self._get_next_version()
return self._version
def _get_next_version(self):
root_dir = os.path.join(self.save_dir, self.name)
existing_versions = [
int(d) for d in os.listdir(root_dir) if os.path.isdir(os.path.join(root_dir, d)) and d.isdigit()
]
if len(existing_versions) == 0:
return 0
else:
return max(existing_versions) + 1

View File

@ -1,9 +1,16 @@
import os
import pickle
import pytest
import torch
import tests.utils as tutils
from pytorch_lightning import Trainer
from pytorch_lightning.logging import LightningLoggerBase, rank_zero_only
from pytorch_lightning.logging import (
LightningLoggerBase,
rank_zero_only,
TensorboardLogger,
)
from pytorch_lightning.testing import LightningTestModel
@ -16,6 +23,7 @@ def test_testtube_logger(tmpdir):
logger = tutils.get_test_tube_logger(tmpdir, False)
trainer_options = dict(
default_save_path=tmpdir,
max_epochs=1,
train_percent_check=0.01,
logger=logger
@ -39,6 +47,7 @@ def test_testtube_pickle(tmpdir):
logger.save()
trainer_options = dict(
default_save_path=tmpdir,
max_epochs=1,
train_percent_check=0.01,
logger=logger
@ -66,6 +75,7 @@ def test_mlflow_logger(tmpdir):
logger = MLFlowLogger("test", tracking_uri=f"file:{os.sep * 2}{mlflow_dir}")
trainer_options = dict(
default_save_path=tmpdir,
max_epochs=1,
train_percent_check=0.01,
logger=logger
@ -92,6 +102,7 @@ def test_mlflow_pickle(tmpdir):
mlflow_dir = os.path.join(tmpdir, "mlruns")
logger = MLFlowLogger("test", tracking_uri=f"file:{os.sep * 2}{mlflow_dir}")
trainer_options = dict(
default_save_path=tmpdir,
max_epochs=1,
logger=logger
)
@ -130,6 +141,7 @@ def test_comet_logger(tmpdir, monkeypatch):
)
trainer_options = dict(
default_save_path=tmpdir,
max_epochs=1,
train_percent_check=0.01,
logger=logger
@ -170,6 +182,7 @@ def test_comet_pickle(tmpdir, monkeypatch):
)
trainer_options = dict(
default_save_path=tmpdir,
max_epochs=1,
logger=logger
)
@ -180,6 +193,89 @@ def test_comet_pickle(tmpdir, monkeypatch):
trainer2.logger.log_metrics({"acc": 1.0})
def test_tensorboard_logger(tmpdir):
"""Verify that basic functionality of Tensorboard logger works."""
hparams = tutils.get_hparams()
model = LightningTestModel(hparams)
logger = TensorboardLogger(save_dir=tmpdir, name="tensorboard_logger_test")
trainer_options = dict(max_num_epochs=1, train_percent_check=0.01, logger=logger)
trainer = Trainer(**trainer_options)
result = trainer.fit(model)
print("result finished")
assert result == 1, "Training failed"
def test_tensorboard_pickle(tmpdir):
"""Verify that pickling trainer with Tensorboard logger works."""
hparams = tutils.get_hparams()
model = LightningTestModel(hparams)
comet_dir = os.path.join(tmpdir, "cometruns")
logger = TensorboardLogger(save_dir=tmpdir, name="tensorboard_pickle_test")
trainer_options = dict(max_num_epochs=1, logger=logger)
trainer = Trainer(**trainer_options)
pkl_bytes = pickle.dumps(trainer)
trainer2 = pickle.loads(pkl_bytes)
trainer2.logger.log_metrics({"acc": 1.0})
def test_tensorboard_automatic_versioning(tmpdir):
"""Verify that automatic versioning works"""
root_dir = tmpdir.mkdir("tb_versioning")
root_dir.mkdir("0")
root_dir.mkdir("1")
logger = TensorboardLogger(save_dir=tmpdir, name="tb_versioning")
assert logger.version == 2
def test_tensorboard_manual_versioning(tmpdir):
"""Verify that manual versioning works"""
root_dir = tmpdir.mkdir("tb_versioning")
root_dir.mkdir("0")
root_dir.mkdir("1")
root_dir.mkdir("2")
logger = TensorboardLogger(save_dir=tmpdir, name="tb_versioning", version=1)
assert logger.version == 1
@pytest.mark.parametrize("step_idx", [10, None])
def test_tensorboard_log_metrics(tmpdir, step_idx):
logger = TensorboardLogger(tmpdir)
metrics = {
"float": 0.3,
"int": 1,
"FloatTensor": torch.tensor(0.1),
"IntTensor": torch.tensor(1)
}
logger.log_metrics(metrics, step_idx)
def test_tensorboard_log_hyperparams(tmpdir):
logger = TensorboardLogger(tmpdir)
hparams = {
"float": 0.3,
"int": 1,
"string": "abc",
"bool": True
}
logger.log_hyperparams(hparams)
def test_custom_logger(tmpdir):
class CustomLogger(LightningLoggerBase):
def __init__(self):