[doc] Move each profiler to its own file + Add missing PyTorchProfiler to the doc (#7822)
This commit is contained in:
parent
6a0d503693
commit
51d370f4c2
|
@ -122,6 +122,9 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).
|
|||
- `Trainer.fit` now raises an error when using manual optimization with unsupported features such as `gradient_clip_val` or `accumulate_grad_batches` ([#7788](https://github.com/PyTorchLightning/pytorch-lightning/pull/7788))
|
||||
|
||||
|
||||
- Moved profilers to their own file ([#7822](https://github.com/PyTorchLightning/pytorch-lightning/pull/7822))
|
||||
|
||||
|
||||
### Deprecated
|
||||
|
||||
|
||||
|
|
|
@ -137,8 +137,15 @@ Profiler API
|
|||
.. autosummary::
|
||||
:toctree: api
|
||||
:nosignatures:
|
||||
:template: classtemplate.rst
|
||||
|
||||
AbstractProfiler
|
||||
AdvancedProfiler
|
||||
BaseProfiler
|
||||
PassThroughProfiler
|
||||
PyTorchProfiler
|
||||
SimpleProfiler
|
||||
|
||||
profilers
|
||||
|
||||
Trainer API
|
||||
-----------
|
||||
|
|
|
@ -194,14 +194,16 @@ Or::
|
|||
python -c 'import torch; print(torch.autograd.profiler.load_nvprof("trace_name.prof"))'
|
||||
|
||||
"""
|
||||
|
||||
from pytorch_lightning.profiler.profilers import AdvancedProfiler, BaseProfiler, PassThroughProfiler, SimpleProfiler
|
||||
from pytorch_lightning.profiler.advanced import AdvancedProfiler
|
||||
from pytorch_lightning.profiler.base import AbstractProfiler, BaseProfiler, PassThroughProfiler
|
||||
from pytorch_lightning.profiler.pytorch import PyTorchProfiler
|
||||
from pytorch_lightning.profiler.simple import SimpleProfiler
|
||||
|
||||
__all__ = [
|
||||
'AbstractProfiler',
|
||||
'BaseProfiler',
|
||||
'SimpleProfiler',
|
||||
'AdvancedProfiler',
|
||||
'PassThroughProfiler',
|
||||
"PyTorchProfiler",
|
||||
'PyTorchProfiler',
|
||||
'SimpleProfiler',
|
||||
]
|
||||
|
|
|
@ -0,0 +1,92 @@
|
|||
# Copyright The PyTorch Lightning team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Profiler to check if there are any bottlenecks in your code."""
|
||||
import cProfile
|
||||
import io
|
||||
import logging
|
||||
import pstats
|
||||
from pathlib import Path
|
||||
from typing import Dict, Optional, Union
|
||||
|
||||
from pytorch_lightning.profiler.base import BaseProfiler
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class AdvancedProfiler(BaseProfiler):
|
||||
"""
|
||||
This profiler uses Python's cProfiler to record more detailed information about
|
||||
time spent in each function call recorded during a given action. The output is quite
|
||||
verbose and you should only use this if you want very detailed reports.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dirpath: Optional[Union[str, Path]] = None,
|
||||
filename: Optional[str] = None,
|
||||
line_count_restriction: float = 1.0,
|
||||
output_filename: Optional[str] = None,
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
dirpath: Directory path for the ``filename``. If ``dirpath`` is ``None`` but ``filename`` is present, the
|
||||
``trainer.log_dir`` (from :class:`~pytorch_lightning.loggers.tensorboard.TensorBoardLogger`)
|
||||
will be used.
|
||||
|
||||
filename: If present, filename where the profiler results will be saved instead of printing to stdout.
|
||||
The ``.txt`` extension will be used automatically.
|
||||
|
||||
line_count_restriction: this can be used to limit the number of functions
|
||||
reported for each action. either an integer (to select a count of lines),
|
||||
or a decimal fraction between 0.0 and 1.0 inclusive (to select a percentage of lines)
|
||||
|
||||
Raises:
|
||||
ValueError:
|
||||
If you attempt to stop recording an action which was never started.
|
||||
"""
|
||||
super().__init__(dirpath=dirpath, filename=filename, output_filename=output_filename)
|
||||
self.profiled_actions: Dict[str, cProfile.Profile] = {}
|
||||
self.line_count_restriction = line_count_restriction
|
||||
|
||||
def start(self, action_name: str) -> None:
|
||||
if action_name not in self.profiled_actions:
|
||||
self.profiled_actions[action_name] = cProfile.Profile()
|
||||
self.profiled_actions[action_name].enable()
|
||||
|
||||
def stop(self, action_name: str) -> None:
|
||||
pr = self.profiled_actions.get(action_name)
|
||||
if pr is None:
|
||||
raise ValueError(f"Attempting to stop recording an action ({action_name}) which was never started.")
|
||||
pr.disable()
|
||||
|
||||
def summary(self) -> str:
|
||||
recorded_stats = {}
|
||||
for action_name, pr in self.profiled_actions.items():
|
||||
s = io.StringIO()
|
||||
ps = pstats.Stats(pr, stream=s).strip_dirs().sort_stats('cumulative')
|
||||
ps.print_stats(self.line_count_restriction)
|
||||
recorded_stats[action_name] = s.getvalue()
|
||||
return self._stats_to_str(recorded_stats)
|
||||
|
||||
def teardown(self, stage: Optional[str] = None) -> None:
|
||||
super().teardown(stage=stage)
|
||||
self.profiled_actions = {}
|
||||
|
||||
def __reduce__(self):
|
||||
# avoids `TypeError: cannot pickle 'cProfile.Profile' object`
|
||||
return (
|
||||
self.__class__,
|
||||
tuple(),
|
||||
dict(dirpath=self.dirpath, filename=self.filename, line_count_restriction=self.line_count_restriction),
|
||||
)
|
|
@ -0,0 +1,215 @@
|
|||
# Copyright The PyTorch Lightning team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Profiler to check if there are any bottlenecks in your code."""
|
||||
import logging
|
||||
import os
|
||||
from abc import ABC, abstractmethod
|
||||
from contextlib import contextmanager
|
||||
from pathlib import Path
|
||||
from typing import Any, Callable, Dict, Optional, TextIO, Union
|
||||
|
||||
from pytorch_lightning.utilities import rank_zero_warn
|
||||
from pytorch_lightning.utilities.cloud_io import get_filesystem
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class AbstractProfiler(ABC):
|
||||
"""Specification of a profiler."""
|
||||
|
||||
@abstractmethod
|
||||
def start(self, action_name: str) -> None:
|
||||
"""Defines how to start recording an action."""
|
||||
|
||||
@abstractmethod
|
||||
def stop(self, action_name: str) -> None:
|
||||
"""Defines how to record the duration once an action is complete."""
|
||||
|
||||
@abstractmethod
|
||||
def summary(self) -> str:
|
||||
"""Create profiler summary in text format."""
|
||||
|
||||
@abstractmethod
|
||||
def setup(self, **kwargs: Any) -> None:
|
||||
"""Execute arbitrary pre-profiling set-up steps as defined by subclass."""
|
||||
|
||||
@abstractmethod
|
||||
def teardown(self, **kwargs: Any) -> None:
|
||||
"""Execute arbitrary post-profiling tear-down steps as defined by subclass."""
|
||||
|
||||
|
||||
class BaseProfiler(AbstractProfiler):
|
||||
"""
|
||||
If you wish to write a custom profiler, you should inherit from this class.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dirpath: Optional[Union[str, Path]] = None,
|
||||
filename: Optional[str] = None,
|
||||
output_filename: Optional[str] = None,
|
||||
) -> None:
|
||||
self.dirpath = dirpath
|
||||
self.filename = filename
|
||||
if output_filename is not None:
|
||||
rank_zero_warn(
|
||||
"`Profiler` signature has changed in v1.3. The `output_filename` parameter has been removed in"
|
||||
" favor of `dirpath` and `filename`. Support for the old signature will be removed in v1.5",
|
||||
DeprecationWarning
|
||||
)
|
||||
filepath = Path(output_filename)
|
||||
self.dirpath = filepath.parent
|
||||
self.filename = filepath.stem
|
||||
|
||||
self._output_file: Optional[TextIO] = None
|
||||
self._write_stream: Optional[Callable] = None
|
||||
self._local_rank: Optional[int] = None
|
||||
self._log_dir: Optional[str] = None
|
||||
self._stage: Optional[str] = None
|
||||
|
||||
@contextmanager
|
||||
def profile(self, action_name: str) -> None:
|
||||
"""
|
||||
Yields a context manager to encapsulate the scope of a profiled action.
|
||||
|
||||
Example::
|
||||
|
||||
with self.profile('load training data'):
|
||||
# load training data code
|
||||
|
||||
The profiler will start once you've entered the context and will automatically
|
||||
stop once you exit the code block.
|
||||
"""
|
||||
try:
|
||||
self.start(action_name)
|
||||
yield action_name
|
||||
finally:
|
||||
self.stop(action_name)
|
||||
|
||||
def profile_iterable(self, iterable, action_name: str) -> None:
|
||||
iterator = iter(iterable)
|
||||
while True:
|
||||
try:
|
||||
self.start(action_name)
|
||||
value = next(iterator)
|
||||
self.stop(action_name)
|
||||
yield value
|
||||
except StopIteration:
|
||||
self.stop(action_name)
|
||||
break
|
||||
|
||||
def _rank_zero_info(self, *args, **kwargs) -> None:
|
||||
if self._local_rank in (None, 0):
|
||||
log.info(*args, **kwargs)
|
||||
|
||||
def _prepare_filename(self, extension: str = ".txt") -> str:
|
||||
filename = ""
|
||||
if self._stage is not None:
|
||||
filename += f"{self._stage}-"
|
||||
filename += str(self.filename)
|
||||
if self._local_rank is not None:
|
||||
filename += f"-{self._local_rank}"
|
||||
filename += extension
|
||||
return filename
|
||||
|
||||
def _prepare_streams(self) -> None:
|
||||
if self._write_stream is not None:
|
||||
return
|
||||
if self.filename:
|
||||
filepath = os.path.join(self.dirpath, self._prepare_filename())
|
||||
fs = get_filesystem(filepath)
|
||||
file = fs.open(filepath, "a")
|
||||
self._output_file = file
|
||||
self._write_stream = file.write
|
||||
else:
|
||||
self._write_stream = self._rank_zero_info
|
||||
|
||||
def describe(self) -> None:
|
||||
"""Logs a profile report after the conclusion of run."""
|
||||
# there are pickling issues with open file handles in Python 3.6
|
||||
# so to avoid them, we open and close the files within this function
|
||||
# by calling `_prepare_streams` and `teardown`
|
||||
self._prepare_streams()
|
||||
summary = self.summary()
|
||||
if summary:
|
||||
self._write_stream(summary)
|
||||
if self._output_file is not None:
|
||||
self._output_file.flush()
|
||||
self.teardown(stage=self._stage)
|
||||
|
||||
def _stats_to_str(self, stats: Dict[str, str]) -> str:
|
||||
stage = f"{self._stage.upper()} " if self._stage is not None else ""
|
||||
output = [stage + "Profiler Report"]
|
||||
for action, value in stats.items():
|
||||
header = f"Profile stats for: {action}"
|
||||
if self._local_rank is not None:
|
||||
header += f" rank: {self._local_rank}"
|
||||
output.append(header)
|
||||
output.append(value)
|
||||
return os.linesep.join(output)
|
||||
|
||||
def setup(
|
||||
self,
|
||||
stage: Optional[str] = None,
|
||||
local_rank: Optional[int] = None,
|
||||
log_dir: Optional[str] = None,
|
||||
) -> None:
|
||||
"""Execute arbitrary pre-profiling set-up steps."""
|
||||
self._stage = stage
|
||||
self._local_rank = local_rank
|
||||
self._log_dir = log_dir
|
||||
self.dirpath = self.dirpath or log_dir
|
||||
|
||||
def teardown(self, stage: Optional[str] = None) -> None:
|
||||
"""
|
||||
Execute arbitrary post-profiling tear-down steps.
|
||||
|
||||
Closes the currently open file and stream.
|
||||
"""
|
||||
self._write_stream = None
|
||||
if self._output_file is not None:
|
||||
self._output_file.close()
|
||||
self._output_file = None # can't pickle TextIOWrapper
|
||||
|
||||
def __del__(self) -> None:
|
||||
self.teardown(stage=self._stage)
|
||||
|
||||
def start(self, action_name: str) -> None:
|
||||
raise NotImplementedError
|
||||
|
||||
def stop(self, action_name: str) -> None:
|
||||
raise NotImplementedError
|
||||
|
||||
def summary(self) -> str:
|
||||
raise NotImplementedError
|
||||
|
||||
@property
|
||||
def local_rank(self) -> int:
|
||||
return 0 if self._local_rank is None else self._local_rank
|
||||
|
||||
|
||||
class PassThroughProfiler(BaseProfiler):
|
||||
"""
|
||||
This class should be used when you don't want the (small) overhead of profiling.
|
||||
The Trainer uses this class by default.
|
||||
"""
|
||||
|
||||
def start(self, action_name: str) -> None:
|
||||
pass
|
||||
|
||||
def stop(self, action_name: str) -> None:
|
||||
pass
|
||||
|
||||
def summary(self) -> str:
|
||||
return ""
|
|
@ -1,387 +1,20 @@
|
|||
# Copyright The PyTorch Lightning team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Profiler to check if there are any bottlenecks in your code."""
|
||||
import cProfile
|
||||
import io
|
||||
import logging
|
||||
import os
|
||||
import pstats
|
||||
import time
|
||||
from abc import ABC, abstractmethod
|
||||
from collections import defaultdict
|
||||
from contextlib import contextmanager
|
||||
from pathlib import Path
|
||||
from typing import Any, Callable, Dict, Optional, TextIO, Tuple, Union
|
||||
from pytorch_lightning.utilities.distributed import rank_zero_deprecation
|
||||
|
||||
import numpy as np
|
||||
rank_zero_deprecation(
|
||||
"Using ``import pytorch_lightning.profiler.profilers`` is depreceated in v1.4, and will be removed in v1.6. "
|
||||
"HINT: Use ``import pytorch_lightning.profiler`` directly."
|
||||
)
|
||||
|
||||
from pytorch_lightning.utilities import rank_zero_warn
|
||||
from pytorch_lightning.utilities.cloud_io import get_filesystem
|
||||
from pytorch_lightning.profiler.advanced import AdvancedProfiler # noqa E402
|
||||
from pytorch_lightning.profiler.base import AbstractProfiler, BaseProfiler, PassThroughProfiler # noqa E402
|
||||
from pytorch_lightning.profiler.pytorch import PyTorchProfiler # noqa E402
|
||||
from pytorch_lightning.profiler.simple import SimpleProfiler # noqa E402
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class AbstractProfiler(ABC):
|
||||
"""Specification of a profiler."""
|
||||
|
||||
@abstractmethod
|
||||
def start(self, action_name: str) -> None:
|
||||
"""Defines how to start recording an action."""
|
||||
|
||||
@abstractmethod
|
||||
def stop(self, action_name: str) -> None:
|
||||
"""Defines how to record the duration once an action is complete."""
|
||||
|
||||
@abstractmethod
|
||||
def summary(self) -> str:
|
||||
"""Create profiler summary in text format."""
|
||||
|
||||
@abstractmethod
|
||||
def setup(self, **kwargs: Any) -> None:
|
||||
"""Execute arbitrary pre-profiling set-up steps as defined by subclass."""
|
||||
|
||||
@abstractmethod
|
||||
def teardown(self, **kwargs: Any) -> None:
|
||||
"""Execute arbitrary post-profiling tear-down steps as defined by subclass."""
|
||||
|
||||
|
||||
class BaseProfiler(AbstractProfiler):
|
||||
"""
|
||||
If you wish to write a custom profiler, you should inherit from this class.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dirpath: Optional[Union[str, Path]] = None,
|
||||
filename: Optional[str] = None,
|
||||
output_filename: Optional[str] = None,
|
||||
) -> None:
|
||||
self.dirpath = dirpath
|
||||
self.filename = filename
|
||||
if output_filename is not None:
|
||||
rank_zero_warn(
|
||||
"`Profiler` signature has changed in v1.3. The `output_filename` parameter has been removed in"
|
||||
" favor of `dirpath` and `filename`. Support for the old signature will be removed in v1.5",
|
||||
DeprecationWarning
|
||||
)
|
||||
filepath = Path(output_filename)
|
||||
self.dirpath = filepath.parent
|
||||
self.filename = filepath.stem
|
||||
|
||||
self._output_file: Optional[TextIO] = None
|
||||
self._write_stream: Optional[Callable] = None
|
||||
self._local_rank: Optional[int] = None
|
||||
self._log_dir: Optional[str] = None
|
||||
self._stage: Optional[str] = None
|
||||
|
||||
@contextmanager
|
||||
def profile(self, action_name: str) -> None:
|
||||
"""
|
||||
Yields a context manager to encapsulate the scope of a profiled action.
|
||||
|
||||
Example::
|
||||
|
||||
with self.profile('load training data'):
|
||||
# load training data code
|
||||
|
||||
The profiler will start once you've entered the context and will automatically
|
||||
stop once you exit the code block.
|
||||
"""
|
||||
try:
|
||||
self.start(action_name)
|
||||
yield action_name
|
||||
finally:
|
||||
self.stop(action_name)
|
||||
|
||||
def profile_iterable(self, iterable, action_name: str) -> None:
|
||||
iterator = iter(iterable)
|
||||
while True:
|
||||
try:
|
||||
self.start(action_name)
|
||||
value = next(iterator)
|
||||
self.stop(action_name)
|
||||
yield value
|
||||
except StopIteration:
|
||||
self.stop(action_name)
|
||||
break
|
||||
|
||||
def _rank_zero_info(self, *args, **kwargs) -> None:
|
||||
if self._local_rank in (None, 0):
|
||||
log.info(*args, **kwargs)
|
||||
|
||||
def _prepare_filename(self, extension: str = ".txt") -> str:
|
||||
filename = ""
|
||||
if self._stage is not None:
|
||||
filename += f"{self._stage}-"
|
||||
filename += str(self.filename)
|
||||
if self._local_rank is not None:
|
||||
filename += f"-{self._local_rank}"
|
||||
filename += extension
|
||||
return filename
|
||||
|
||||
def _prepare_streams(self) -> None:
|
||||
if self._write_stream is not None:
|
||||
return
|
||||
if self.filename:
|
||||
filepath = os.path.join(self.dirpath, self._prepare_filename())
|
||||
fs = get_filesystem(filepath)
|
||||
file = fs.open(filepath, "a")
|
||||
self._output_file = file
|
||||
self._write_stream = file.write
|
||||
else:
|
||||
self._write_stream = self._rank_zero_info
|
||||
|
||||
def describe(self) -> None:
|
||||
"""Logs a profile report after the conclusion of run."""
|
||||
# there are pickling issues with open file handles in Python 3.6
|
||||
# so to avoid them, we open and close the files within this function
|
||||
# by calling `_prepare_streams` and `teardown`
|
||||
self._prepare_streams()
|
||||
summary = self.summary()
|
||||
if summary:
|
||||
self._write_stream(summary)
|
||||
if self._output_file is not None:
|
||||
self._output_file.flush()
|
||||
self.teardown(stage=self._stage)
|
||||
|
||||
def _stats_to_str(self, stats: Dict[str, str]) -> str:
|
||||
stage = f"{self._stage.upper()} " if self._stage is not None else ""
|
||||
output = [stage + "Profiler Report"]
|
||||
for action, value in stats.items():
|
||||
header = f"Profile stats for: {action}"
|
||||
if self._local_rank is not None:
|
||||
header += f" rank: {self._local_rank}"
|
||||
output.append(header)
|
||||
output.append(value)
|
||||
return os.linesep.join(output)
|
||||
|
||||
def setup(
|
||||
self,
|
||||
stage: Optional[str] = None,
|
||||
local_rank: Optional[int] = None,
|
||||
log_dir: Optional[str] = None,
|
||||
) -> None:
|
||||
"""Execute arbitrary pre-profiling set-up steps."""
|
||||
self._stage = stage
|
||||
self._local_rank = local_rank
|
||||
self._log_dir = log_dir
|
||||
self.dirpath = self.dirpath or log_dir
|
||||
|
||||
def teardown(self, stage: Optional[str] = None) -> None:
|
||||
"""
|
||||
Execute arbitrary post-profiling tear-down steps.
|
||||
|
||||
Closes the currently open file and stream.
|
||||
"""
|
||||
self._write_stream = None
|
||||
if self._output_file is not None:
|
||||
self._output_file.close()
|
||||
self._output_file = None # can't pickle TextIOWrapper
|
||||
|
||||
def __del__(self) -> None:
|
||||
self.teardown(stage=self._stage)
|
||||
|
||||
def start(self, action_name: str) -> None:
|
||||
raise NotImplementedError
|
||||
|
||||
def stop(self, action_name: str) -> None:
|
||||
raise NotImplementedError
|
||||
|
||||
def summary(self) -> str:
|
||||
raise NotImplementedError
|
||||
|
||||
@property
|
||||
def local_rank(self) -> int:
|
||||
return 0 if self._local_rank is None else self._local_rank
|
||||
|
||||
|
||||
class PassThroughProfiler(BaseProfiler):
|
||||
"""
|
||||
This class should be used when you don't want the (small) overhead of profiling.
|
||||
The Trainer uses this class by default.
|
||||
"""
|
||||
|
||||
def start(self, action_name: str) -> None:
|
||||
pass
|
||||
|
||||
def stop(self, action_name: str) -> None:
|
||||
pass
|
||||
|
||||
def summary(self) -> str:
|
||||
return ""
|
||||
|
||||
|
||||
class SimpleProfiler(BaseProfiler):
|
||||
"""
|
||||
This profiler simply records the duration of actions (in seconds) and reports
|
||||
the mean duration of each action and the total time spent over the entire training run.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dirpath: Optional[Union[str, Path]] = None,
|
||||
filename: Optional[str] = None,
|
||||
extended: bool = True,
|
||||
output_filename: Optional[str] = None,
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
dirpath: Directory path for the ``filename``. If ``dirpath`` is ``None`` but ``filename`` is present, the
|
||||
``trainer.log_dir`` (from :class:`~pytorch_lightning.loggers.tensorboard.TensorBoardLogger`)
|
||||
will be used.
|
||||
|
||||
filename: If present, filename where the profiler results will be saved instead of printing to stdout.
|
||||
The ``.txt`` extension will be used automatically.
|
||||
|
||||
Raises:
|
||||
ValueError:
|
||||
If you attempt to start an action which has already started, or
|
||||
if you attempt to stop recording an action which was never started.
|
||||
"""
|
||||
super().__init__(dirpath=dirpath, filename=filename, output_filename=output_filename)
|
||||
self.current_actions: Dict[str, float] = {}
|
||||
self.recorded_durations = defaultdict(list)
|
||||
self.extended = extended
|
||||
self.start_time = time.monotonic()
|
||||
|
||||
def start(self, action_name: str) -> None:
|
||||
if action_name in self.current_actions:
|
||||
raise ValueError(f"Attempted to start {action_name} which has already started.")
|
||||
self.current_actions[action_name] = time.monotonic()
|
||||
|
||||
def stop(self, action_name: str) -> None:
|
||||
end_time = time.monotonic()
|
||||
if action_name not in self.current_actions:
|
||||
raise ValueError(f"Attempting to stop recording an action ({action_name}) which was never started.")
|
||||
start_time = self.current_actions.pop(action_name)
|
||||
duration = end_time - start_time
|
||||
self.recorded_durations[action_name].append(duration)
|
||||
|
||||
def _make_report(self) -> Tuple[list, float]:
|
||||
total_duration = time.monotonic() - self.start_time
|
||||
report = [[a, d, 100. * np.sum(d) / total_duration] for a, d in self.recorded_durations.items()]
|
||||
report.sort(key=lambda x: x[2], reverse=True)
|
||||
return report, total_duration
|
||||
|
||||
def summary(self) -> str:
|
||||
sep = os.linesep
|
||||
output_string = ""
|
||||
if self._stage is not None:
|
||||
output_string += f"{self._stage.upper()} "
|
||||
output_string += f"Profiler Report{sep}"
|
||||
|
||||
if self.extended:
|
||||
|
||||
if len(self.recorded_durations) > 0:
|
||||
max_key = np.max([len(k) for k in self.recorded_durations.keys()])
|
||||
|
||||
def log_row(action, mean, num_calls, total, per):
|
||||
row = f"{sep}{action:<{max_key}s}\t| {mean:<15}\t|"
|
||||
row += f"{num_calls:<15}\t| {total:<15}\t| {per:<15}\t|"
|
||||
return row
|
||||
|
||||
output_string += log_row("Action", "Mean duration (s)", "Num calls", "Total time (s)", "Percentage %")
|
||||
output_string_len = len(output_string)
|
||||
output_string += f"{sep}{'-' * output_string_len}"
|
||||
report, total_duration = self._make_report()
|
||||
output_string += log_row("Total", "-", "_", f"{total_duration:.5}", "100 %")
|
||||
output_string += f"{sep}{'-' * output_string_len}"
|
||||
for action, durations, duration_per in report:
|
||||
output_string += log_row(
|
||||
action,
|
||||
f"{np.mean(durations):.5}",
|
||||
f"{len(durations):}",
|
||||
f"{np.sum(durations):.5}",
|
||||
f"{duration_per:.5}",
|
||||
)
|
||||
else:
|
||||
|
||||
def log_row(action, mean, total):
|
||||
return f"{sep}{action:<20s}\t| {mean:<15}\t| {total:<15}"
|
||||
|
||||
output_string += log_row("Action", "Mean duration (s)", "Total time (s)")
|
||||
output_string += f"{sep}{'-' * 65}"
|
||||
|
||||
for action, durations in self.recorded_durations.items():
|
||||
output_string += log_row(action, f"{np.mean(durations):.5}", f"{np.sum(durations):.5}")
|
||||
output_string += sep
|
||||
return output_string
|
||||
|
||||
|
||||
class AdvancedProfiler(BaseProfiler):
|
||||
"""
|
||||
This profiler uses Python's cProfiler to record more detailed information about
|
||||
time spent in each function call recorded during a given action. The output is quite
|
||||
verbose and you should only use this if you want very detailed reports.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dirpath: Optional[Union[str, Path]] = None,
|
||||
filename: Optional[str] = None,
|
||||
line_count_restriction: float = 1.0,
|
||||
output_filename: Optional[str] = None,
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
dirpath: Directory path for the ``filename``. If ``dirpath`` is ``None`` but ``filename`` is present, the
|
||||
``trainer.log_dir`` (from :class:`~pytorch_lightning.loggers.tensorboard.TensorBoardLogger`)
|
||||
will be used.
|
||||
|
||||
filename: If present, filename where the profiler results will be saved instead of printing to stdout.
|
||||
The ``.txt`` extension will be used automatically.
|
||||
|
||||
line_count_restriction: this can be used to limit the number of functions
|
||||
reported for each action. either an integer (to select a count of lines),
|
||||
or a decimal fraction between 0.0 and 1.0 inclusive (to select a percentage of lines)
|
||||
|
||||
Raises:
|
||||
ValueError:
|
||||
If you attempt to stop recording an action which was never started.
|
||||
"""
|
||||
super().__init__(dirpath=dirpath, filename=filename, output_filename=output_filename)
|
||||
self.profiled_actions: Dict[str, cProfile.Profile] = {}
|
||||
self.line_count_restriction = line_count_restriction
|
||||
|
||||
def start(self, action_name: str) -> None:
|
||||
if action_name not in self.profiled_actions:
|
||||
self.profiled_actions[action_name] = cProfile.Profile()
|
||||
self.profiled_actions[action_name].enable()
|
||||
|
||||
def stop(self, action_name: str) -> None:
|
||||
pr = self.profiled_actions.get(action_name)
|
||||
if pr is None:
|
||||
raise ValueError(f"Attempting to stop recording an action ({action_name}) which was never started.")
|
||||
pr.disable()
|
||||
|
||||
def summary(self) -> str:
|
||||
recorded_stats = {}
|
||||
for action_name, pr in self.profiled_actions.items():
|
||||
s = io.StringIO()
|
||||
ps = pstats.Stats(pr, stream=s).strip_dirs().sort_stats('cumulative')
|
||||
ps.print_stats(self.line_count_restriction)
|
||||
recorded_stats[action_name] = s.getvalue()
|
||||
return self._stats_to_str(recorded_stats)
|
||||
|
||||
def teardown(self, stage: Optional[str] = None) -> None:
|
||||
super().teardown(stage=stage)
|
||||
self.profiled_actions = {}
|
||||
|
||||
def __reduce__(self):
|
||||
# avoids `TypeError: cannot pickle 'cProfile.Profile' object`
|
||||
return (
|
||||
self.__class__,
|
||||
tuple(),
|
||||
dict(dirpath=self.dirpath, filename=self.filename, line_count_restriction=self.line_count_restriction),
|
||||
)
|
||||
__all__ = [
|
||||
'AbstractProfiler',
|
||||
'BaseProfiler',
|
||||
'AdvancedProfiler',
|
||||
'PassThroughProfiler',
|
||||
'PyTorchProfiler',
|
||||
'SimpleProfiler',
|
||||
]
|
||||
|
|
|
@ -23,7 +23,7 @@ import torch
|
|||
from torch import nn, Tensor
|
||||
from torch.autograd.profiler import record_function
|
||||
|
||||
from pytorch_lightning.profiler.profilers import BaseProfiler
|
||||
from pytorch_lightning.profiler.base import BaseProfiler
|
||||
from pytorch_lightning.utilities.distributed import rank_zero_warn
|
||||
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
||||
from pytorch_lightning.utilities.imports import _KINETO_AVAILABLE
|
||||
|
|
|
@ -0,0 +1,123 @@
|
|||
# Copyright The PyTorch Lightning team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Profiler to check if there are any bottlenecks in your code."""
|
||||
import logging
|
||||
import os
|
||||
import time
|
||||
from collections import defaultdict
|
||||
from pathlib import Path
|
||||
from typing import Dict, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
|
||||
from pytorch_lightning.profiler.base import BaseProfiler
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class SimpleProfiler(BaseProfiler):
|
||||
"""
|
||||
This profiler simply records the duration of actions (in seconds) and reports
|
||||
the mean duration of each action and the total time spent over the entire training run.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dirpath: Optional[Union[str, Path]] = None,
|
||||
filename: Optional[str] = None,
|
||||
extended: bool = True,
|
||||
output_filename: Optional[str] = None,
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
dirpath: Directory path for the ``filename``. If ``dirpath`` is ``None`` but ``filename`` is present, the
|
||||
``trainer.log_dir`` (from :class:`~pytorch_lightning.loggers.tensorboard.TensorBoardLogger`)
|
||||
will be used.
|
||||
|
||||
filename: If present, filename where the profiler results will be saved instead of printing to stdout.
|
||||
The ``.txt`` extension will be used automatically.
|
||||
|
||||
Raises:
|
||||
ValueError:
|
||||
If you attempt to start an action which has already started, or
|
||||
if you attempt to stop recording an action which was never started.
|
||||
"""
|
||||
super().__init__(dirpath=dirpath, filename=filename, output_filename=output_filename)
|
||||
self.current_actions: Dict[str, float] = {}
|
||||
self.recorded_durations = defaultdict(list)
|
||||
self.extended = extended
|
||||
self.start_time = time.monotonic()
|
||||
|
||||
def start(self, action_name: str) -> None:
|
||||
if action_name in self.current_actions:
|
||||
raise ValueError(f"Attempted to start {action_name} which has already started.")
|
||||
self.current_actions[action_name] = time.monotonic()
|
||||
|
||||
def stop(self, action_name: str) -> None:
|
||||
end_time = time.monotonic()
|
||||
if action_name not in self.current_actions:
|
||||
raise ValueError(f"Attempting to stop recording an action ({action_name}) which was never started.")
|
||||
start_time = self.current_actions.pop(action_name)
|
||||
duration = end_time - start_time
|
||||
self.recorded_durations[action_name].append(duration)
|
||||
|
||||
def _make_report(self) -> Tuple[list, float]:
|
||||
total_duration = time.monotonic() - self.start_time
|
||||
report = [[a, d, 100. * np.sum(d) / total_duration] for a, d in self.recorded_durations.items()]
|
||||
report.sort(key=lambda x: x[2], reverse=True)
|
||||
return report, total_duration
|
||||
|
||||
def summary(self) -> str:
|
||||
sep = os.linesep
|
||||
output_string = ""
|
||||
if self._stage is not None:
|
||||
output_string += f"{self._stage.upper()} "
|
||||
output_string += f"Profiler Report{sep}"
|
||||
|
||||
if self.extended:
|
||||
|
||||
if len(self.recorded_durations) > 0:
|
||||
max_key = np.max([len(k) for k in self.recorded_durations.keys()])
|
||||
|
||||
def log_row(action, mean, num_calls, total, per):
|
||||
row = f"{sep}{action:<{max_key}s}\t| {mean:<15}\t|"
|
||||
row += f"{num_calls:<15}\t| {total:<15}\t| {per:<15}\t|"
|
||||
return row
|
||||
|
||||
output_string += log_row("Action", "Mean duration (s)", "Num calls", "Total time (s)", "Percentage %")
|
||||
output_string_len = len(output_string)
|
||||
output_string += f"{sep}{'-' * output_string_len}"
|
||||
report, total_duration = self._make_report()
|
||||
output_string += log_row("Total", "-", "_", f"{total_duration:.5}", "100 %")
|
||||
output_string += f"{sep}{'-' * output_string_len}"
|
||||
for action, durations, duration_per in report:
|
||||
output_string += log_row(
|
||||
action,
|
||||
f"{np.mean(durations):.5}",
|
||||
f"{len(durations):}",
|
||||
f"{np.sum(durations):.5}",
|
||||
f"{duration_per:.5}",
|
||||
)
|
||||
else:
|
||||
|
||||
def log_row(action, mean, total):
|
||||
return f"{sep}{action:<20s}\t| {mean:<15}\t| {total:<15}"
|
||||
|
||||
output_string += log_row("Action", "Mean duration (s)", "Total time (s)")
|
||||
output_string += f"{sep}{'-' * 65}"
|
||||
|
||||
for action, durations in self.recorded_durations.items():
|
||||
output_string += log_row(action, f"{np.mean(durations):.5}", f"{np.sum(durations):.5}")
|
||||
output_string += sep
|
||||
return output_string
|
|
@ -12,7 +12,6 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" Test deprecated functionality which will be removed in v1.6.0 """
|
||||
|
||||
import pytest
|
||||
|
||||
from pytorch_lightning import Trainer
|
||||
|
|
Loading…
Reference in New Issue