Add GPU Acceleration apple silicon examples (#18127)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
This commit is contained in:
Nripesh Niketan 2023-07-28 05:22:51 +05:30 committed by GitHub
parent a7bbbcea9a
commit 4e3087951d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 19 additions and 3 deletions

View File

@ -26,7 +26,12 @@ class PyTorchServer(L.app.components.PythonServer):
) )
def setup(self): def setup(self):
self._device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") if torch.cuda.is_available():
self._device = torch.device("cuda:0")
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
self._device = torch.device("mps")
else:
self._device = torch.device("cpu")
self._model = torchvision.models.resnet18(pretrained=True).to(self._device) self._model = torchvision.models.resnet18(pretrained=True).to(self._device)
def predict(self, requests: BatchRequestModel): def predict(self, requests: BatchRequestModel):

View File

@ -69,7 +69,12 @@ def main():
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=workers) dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=workers)
# Decide which device we want to run on # Decide which device we want to run on
device = torch.device("cuda:0" if (torch.cuda.is_available() and num_gpus > 0) else "cpu") if torch.cuda.is_available() and num_gpus > 0:
device = torch.device("cuda:0")
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
device = torch.device("mps")
else:
device = torch.device("cpu")
output_dir = Path("outputs-torch", time.strftime("%Y%m%d-%H%M%S")) output_dir = Path("outputs-torch", time.strftime("%Y%m%d-%H%M%S"))
output_dir.mkdir(parents=True, exist_ok=True) output_dir.mkdir(parents=True, exist_ok=True)

View File

@ -56,7 +56,13 @@ def run(hparams):
torch.manual_seed(hparams.seed) torch.manual_seed(hparams.seed)
use_cuda = torch.cuda.is_available() use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu") use_mps = torch.backends.mps.is_available()
if use_cuda:
device = torch.device("cuda")
elif use_mps:
device = torch.device("mps")
else:
device = torch.device("cpu")
transform = T.Compose([T.ToTensor(), T.Normalize((0.1307,), (0.3081,))]) transform = T.Compose([T.ToTensor(), T.Normalize((0.1307,), (0.3081,))])
train_dataset = MNIST(DATASETS_PATH, train=True, download=True, transform=transform) train_dataset = MNIST(DATASETS_PATH, train=True, download=True, transform=transform)