Update version and changelog (#18767)

Co-authored-by: Jirka Borovec <6035284+Borda@users.noreply.github.com>
This commit is contained in:
Adrian Wälchli 2023-10-11 05:35:24 -07:00 committed by GitHub
parent 83abe5e6a9
commit 4df6e13fab
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 16 additions and 350 deletions

View File

@ -108,6 +108,7 @@ repos:
exclude: |
(?x)^(
src/lightning/app/CHANGELOG.md|
src/lightning/data/CHANGELOG.md|
src/lightning/fabric/CHANGELOG.md|
src/lightning/pytorch/CHANGELOG.md|
README.md

View File

@ -5,35 +5,21 @@ All notable changes to this project will be documented in this file.
The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).
## [UnReleased] - 2023-MM-DD
## [2.1.0] - 2023-10-11
### Added
- Allow customize `gradio` components with lightning colors ([#17054](https://github.com/Lightning-AI/lightning/pull/17054))
-
- Allow customizing `gradio` components with lightning colors ([#17054](https://github.com/Lightning-AI/lightning/pull/17054))
### Changed
- Changed `LocalSourceCodeDir` cache_location to not use home in some certain cases ([#17491](https://github.com/Lightning-AI/lightning/pull/17491))
### Deprecated
-
### Removed
- Remove cluster commands from the CLI ([#18151](https://github.com/Lightning-AI/lightning/pull/18151))
### Fixed
## [2.0.9] - 2023-09-14
### Fixed
@ -335,7 +321,7 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).
### Changed
- Deduplicate top level lighting CLI command groups ([#15761](https://github.com/Lightning-AI/lightning/pull/15761))
- Deduplicate top level lightning CLI command groups ([#15761](https://github.com/Lightning-AI/lightning/pull/15761))
* `lightning add ssh-key` CLI command has been transitioned to `lightning create ssh-key`
* `lightning remove ssh-key` CLI command has been transitioned to `lightning delete ssh-key`
- Set Torch inference mode for prediction ([#15719](https://github.com/Lightning-AI/lightning/pull/15719))
@ -427,7 +413,7 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).
- Add a `JustPyFrontend` to ease UI creation with `https://github.com/justpy-org/justpy` ([#15002](https://github.com/Lightning-AI/lightning/pull/15002))
- Added a layout endpoint to the Rest API and enable to disable pulling or pushing to the state ([#15367](https://github.com/Lightning-AI/lightning/pull/15367)
- Added support for functions for `configure_api` and `configure_commands` to be executed in the Rest API process ([#15098](https://github.com/Lightning-AI/lightning/pull/15098)
- Added support for accessing Lighting Apps via SSH ([#15310](https://github.com/Lightning-AI/lightning/pull/15310))
- Added support for accessing Lightning Apps via SSH ([#15310](https://github.com/Lightning-AI/lightning/pull/15310))
- Added support to start lightning app on cloud without needing to install dependencies locally ([#15019](https://github.com/Lightning-AI/lightning/pull/15019)
### Changed

View File

@ -4,10 +4,9 @@ All notable changes to this project will be documented in this file.
The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).
## \[UnReleased\] - 2023-MM-DD
## [2.1.0] - 2023-10-11
### Added
- Added `LightningDataset` for optimized data loading including fast loading for S3 buckets. ([#17743](https://github.com/Lightning-AI/lightning/pull/17743))
- Added `LightningIterableDataset` for resumable dataloading with iterable datasets ([#17998](https://github.com/Lightning-AI/lightning/pull/17998))

View File

@ -4,224 +4,92 @@ All notable changes to this project will be documented in this file.
The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).
## [UnReleased] - 2023-MM-DD
## [2.1.0] - 2023-10-11
### Added
- Added support for the TPU-v4 architecture ([#17227](https://github.com/Lightning-AI/lightning/pull/17227))
- Added support for XLA's new PJRT runtime ([#17352](https://github.com/Lightning-AI/lightning/pull/17352))
- Added support for Fully Sharded Data Parallel (FSDP) training with XLA ([#18126](https://github.com/Lightning-AI/lightning/pull/18126), [#18424](https://github.com/Lightning-AI/lightning/pull/18424), [#18430](https://github.com/Lightning-AI/lightning/pull/18430))
- Check for invalid TPU device inputs ([#17227](https://github.com/Lightning-AI/lightning/pull/17227))
- Added `XLAStrategy(sync_module_states=bool)` to control whether to broadcast the parameters to all devices ([#17522](https://github.com/Lightning-AI/lightning/pull/17522))
- Added support for joint setup of model and optimizer with FSDP ([#17305](https://github.com/Lightning-AI/lightning/pull/17305))
- Added support for handling multiple parameter groups in optimizers set up with FSDP ([#17305](https://github.com/Lightning-AI/lightning/pull/17305))
- Added support for saving and loading sharded model and optimizer state with `FSDPStrategy` ([#17323](https://github.com/Lightning-AI/lightning/pull/17323))
- Added a warning when calling methods on `_FabricModule` that bypass the strategy-specific wrappers ([#17424](https://github.com/Lightning-AI/lightning/pull/17424))
- Added `Fabric.init_tensor()` context manager to instantiate tensors efficiently directly on device and dtype ([#17488](https://github.com/Lightning-AI/lightning/pull/17488))
- Added `Fabric.init_module()` context manager to instantiate large models efficiently directly on device, dtype, and with sharding support ([#17462](https://github.com/Lightning-AI/lightning/pull/17462))
* Creates the model parameters in the desired dtype (`torch.float32`, `torch.float64`, `torch.float16`, or `torch.bfloat16`) depending on the 'true' precision choice in `Fabric(precision='32-true'|'64-true'|'16-true'|'bf16-true')`
* Handles initialization for FSDP models before wrapping and the Zero stage 3 initialization for DeepSpeed before sharding
- Added support for empty weight initialization with `Fabric.init_module(empty_init=True)` for checkpoint loading ([#17627](https://github.com/Lightning-AI/lightning/pull/17627))
- Added support for meta-device initialization with `Fabric.init_module(empty_init=True)` in FSDP ([#18122](https://github.com/Lightning-AI/lightning/pull/18122))
- Added `lightning.fabric.plugins.Precision.module_init_context()` and `lightning.fabric.strategies.Strategy.module_init_context()` context managers to control model and tensor instantiation ([#17462](https://github.com/Lightning-AI/lightning/pull/17462))
- `lightning.fabric.strategies.Strategy.tensor_init_context()` context manager to instantiate tensors efficiently directly on device and dtype ([#17607](https://github.com/Lightning-AI/lightning/pull/17607))
- Run the DDP wrapper in a CUDA stream ([#17334](https://github.com/Lightning-AI/lightning/pull/17334))
- Added support for true half-precision as `Fabric(precision="16-true"|"bf16-true")` ([#17287](https://github.com/Lightning-AI/lightning/pull/17287))
- Added support for mixed 8-bit precision as `Fabric(precision="transformer-engine")` using [Nvidia's Transformer Engine](https://docs.nvidia.com/deeplearning/transformer-engine) ([#17597](https://github.com/Lightning-AI/lightning/pull/17597))
- Added support for linear layer quantization with `Fabric(plugins=BitsandbytesPrecision())` using [bitsandbytes](https://github.com/TimDettmers/bitsandbytes) ([#18655](https://github.com/Lightning-AI/lightning/pull/18655))
- Added error messaging for missed `.launch()` when it is required ([#17570](https://github.com/Lightning-AI/lightning/pull/17570))
- Added support for saving checkpoints with either full state-dict or sharded state dict via `FSDPStrategy(state_dict_type="full"|"sharded")` ([#17526](https://github.com/Lightning-AI/lightning/pull/17526))
- Added support for loading a full-state checkpoint file into a sharded model ([#17623](https://github.com/Lightning-AI/lightning/pull/17623))
- Added support for calling hooks on a LightningModule via `Fabric.call` ([#17874](https://github.com/Lightning-AI/lightning/pull/17874))
- Added the parameter `Fabric.load(..., strict=True|False)` to enable non-strict loading of partial checkpoint state ([#17645](https://github.com/Lightning-AI/lightning/pull/17645))
- Added the parameter `Fabric.save(..., filter=...)` to enable saving a partial checkpoint state ([#17845](https://github.com/Lightning-AI/lightning/pull/17845))
- Added support for loading optimizer states from a full-state checkpoint file ([#17747](https://github.com/Lightning-AI/lightning/pull/17747))
- Automatically call `xla_model.mark_step()` before saving checkpoints with XLA ([#17882](https://github.com/Lightning-AI/lightning/pull/17882))
- Automatically call `xla_model.mark_step()` after `optimizer.step()` with XLA ([#17883](https://github.com/Lightning-AI/lightning/pull/17883))
- Added support for all half-precision modes in FSDP precision plugin ([#17807](https://github.com/Lightning-AI/lightning/pull/17807))
- Added `FSDPStrategy(activation_checkpointing_policy=...)` to customize the layer policy for automatic activation checkpointing (requires torch>=2.1) ([#18045](https://github.com/Lightning-AI/lightning/pull/18045))
- Added a callback for spike-detection ([#18014](https://github.com/Lightning-AI/lightning/pull/18014))
- Added the ability to set the `torch.distributed.fsdp.ShardingStrategy` via string in `FSDPStrategy` ([#18087](https://github.com/Lightning-AI/lightning/pull/18087))
- Improved error messages when attempting to load a DeepSpeed checkpoint at an invalid path ([#17795](https://github.com/Lightning-AI/lightning/pull/17795))
- Added `Fabric.load_raw()` for loading raw PyTorch state dict checkpoints for model or optimizer objects ([#18049](https://github.com/Lightning-AI/lightning/pull/18049))
- Allowed accessing rank information in the main process before processes are launched when using the `XLAStrategy` ([#18194](https://github.com/Lightning-AI/lightning/pull/18194))
- Added automatic process cleanup to avoid zombie child processes and stalls when exceptions are raised ([#18218](https://github.com/Lightning-AI/lightning/pull/18218))
- Added validation of user input for `devices` and `num_nodes` when running with `SLURM` or `TorchElastic` ([#18292](https://github.com/Lightning-AI/lightning/pull/18292))
- Improved the error messaging and instructions when handling custom batch samplers in distributed settings ([#18402](https://github.com/Lightning-AI/lightning/pull/18402))
- Added support for saving and loading stateful objects other than modules and optimizers ([#18513](https://github.com/Lightning-AI/lightning/pull/18513))
- Enabled the default process group configuration for FSDP's hybrid sharding ([#18583](https://github.com/Lightning-AI/lightning/pull/18583))
- Added `lightning.fabric.utilities.suggested_max_num_workers` to assist with setting a good value in distributed settings ([#18591](https://github.com/Lightning-AI/lightning/pull/18591))
- Added `lightning.fabric.utilities.is_shared_filesystem` utility function to automatically check whether the filesystem is shared between machines ([#18586](https://github.com/Lightning-AI/lightning/pull/18586))
- Removed support for PyTorch 1.11 ([#18691](https://github.com/Lightning-AI/lightning/pull/18691))
- Added support for passing the argument `.load_state_dict(..., assign=True|False)` on Fabric-wrapped modules in PyTorch 2.1 or newer ([#18690](https://github.com/Lightning-AI/lightning/pull/18690))
### Changed
- Allow using iterable-style datasets with TPUs ([#17331](https://github.com/Lightning-AI/lightning/pull/17331))
- Increased the minimum XLA requirement to 1.13 ([#17368](https://github.com/Lightning-AI/lightning/pull/17368))
- Fabric argument validation now only raises an error if conflicting settings are set through the CLI ([#17679](https://github.com/Lightning-AI/lightning/pull/17679))
- DataLoader re-instantiation is now only performed when a distributed sampler is required ([#18191](https://github.com/Lightning-AI/lightning/pull/18191))
- Improved the formatting of emitted warnings ([#18288](https://github.com/Lightning-AI/lightning/pull/18288))
- Broadcast and reduction of tensors with XLA-based strategies now preserve the input's device ([#18275](https://github.com/Lightning-AI/lightning/pull/18275))
- Due to lack of reliability, Fabric now only runs on one GPU instead of all GPUs in a Jupyter notebook if `devices="auto"` (default) ([#18291](https://github.com/Lightning-AI/lightning/pull/18291))
- Enabled launching via `torchrun` in a SLURM environment; the `TorchElasticEnvironment` now gets chosen over the `SLURMEnvironment` if both are detected ([#18618](https://github.com/Lightning-AI/lightning/pull/18618))
- If not set by the user, Lightning will set `OMP_NUM_THREADS` to `num_cpus / num_processes` when launching subprocesses (e.g. when DDP is used) to avoid system overload for CPU-intensive tasks ([#18677](https://github.com/Lightning-AI/lightning/pull/18677))
### Deprecated
- Deprecated the `DDPStrategy.is_distributed` property. This strategy is distributed by definition ([#17381](https://github.com/Lightning-AI/lightning/pull/17381))
- Deprecated the `SingleTPUStrategy` (`strategy="single_tpu"`) in favor of `SingleDeviceXLAStrategy` (`strategy="single_xla"`) ([#17383](https://github.com/Lightning-AI/lightning/pull/17383))
- Deprecated the `TPUAccelerator` in favor of `XLAAccelerator` ([#17383](https://github.com/Lightning-AI/lightning/pull/17383))
- Deprecated the `TPUPrecision` in favor of `XLAPrecision` ([#17383](https://github.com/Lightning-AI/lightning/pull/17383))
- Deprecated the `TPUBf16Precision` in favor of `XLABf16Precision` ([#17383](https://github.com/Lightning-AI/lightning/pull/17383))
-
### Removed
- Removed automatic sharding support with `Fabric.run` or using `fabric.launch(fn)`. This only impacts FSDP and DeepSpeed strategy users. Please instantiate your module under the newly added `fabric.init_module` context manager ([#17832](https://github.com/Lightning-AI/lightning/pull/17832))
- Removed the unsupported `checkpoint_io` argument from the `FSDPStrategy` ([#18192](https://github.com/Lightning-AI/lightning/pull/18192))
### Fixed
- Fixed issue where running on TPUs would select the wrong device index ([#17227](https://github.com/Lightning-AI/lightning/pull/17227))
- Removed the need to call `.launch()` when using the DP-strategy (`strategy="dp"`) ([#17931](https://github.com/Lightning-AI/lightning/pull/17931))
- Fixed FSDP re-applying activation checkpointing when the user had manually applied it already ([#18006](https://github.com/Lightning-AI/lightning/pull/18006))
- Fixed FSDP re-wrapping the module root when the user had manually wrapped the model ([#18054](https://github.com/Lightning-AI/lightning/pull/18054))
- Fixed issue where unexpected exceptions would leave the default torch dtype modified when using true precision settings ([#18500](https://github.com/Lightning-AI/lightning/pull/18500))
- Fixed redundant input-type casting in FSDP precision ([#18630](https://github.com/Lightning-AI/lightning/pull/18630))
- Fixed an issue with `find_usable_cuda_devices(0)` incorrectly returning a list of devices ([#18722](https://github.com/Lightning-AI/lightning/pull/18722))
- Fixed redundant file writes in `CSVLogger` ([#18567](https://github.com/Lightning-AI/lightning/pull/18567))
## [2.0.9] - 2023-09-14
@ -246,10 +114,6 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).
- Fixed redundant file writes in `CSVLogger` ([#18567](https://github.com/Lightning-AI/lightning/pull/18567))
## [2.0.7] - 2023-08-14
### Changed

View File

@ -5,302 +5,121 @@ All notable changes to this project will be documented in this file.
The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).
## [UnReleased] - 2023-MM-DD
## [2.1.0] - 2023-10-11
### Added
- Changed default metric formatting from `round(..., 3)` to `".3f"` format string in `MetricsTextColumn` class ([#18483])(https://github.com/Lightning-AI/lightning/pull/18483)
- Added `metrics_format` attribute to `RichProgressBarTheme` class ([#18373](https://github.com/Lightning-AI/lightning/pull/18373))
- Added `CHECKPOINT_EQUALS_CHAR` attribute to `ModelCheckpoint` class ([#17999](https://github.com/Lightning-AI/lightning/pull/17999))
- Added `**summarize_kwargs` to `ModelSummary` and `RichModelSummary` callbacks ([#16788](https://github.com/Lightning-AI/lightning/pull/16788))
- Added support for the `max_size_cycle|max_size|min_size` iteration modes during evaluation ([#17163](https://github.com/Lightning-AI/lightning/pull/17163))
- Added support for the TPU-v4 architecture ([#17227](https://github.com/Lightning-AI/lightning/pull/17227))
- Added support for XLA's new PJRT runtime ([#17352](https://github.com/Lightning-AI/lightning/pull/17352))
- Check for invalid TPU device inputs ([#17227](https://github.com/Lightning-AI/lightning/pull/17227))
- Added `XLAStrategy(sync_module_states=bool)` to control whether to broadcast the parameters to all devices ([#17522](https://github.com/Lightning-AI/lightning/pull/17522))
- Added support for multiple optimizer parameter groups when using the FSDP strategy ([#17309](https://github.com/Lightning-AI/lightning/pull/17309))
- Enabled saving the full model state dict when using the `FSDPStrategy` ([#16558](https://github.com/Lightning-AI/lightning/pull/16558))
- Update `LightningDataModule.from_datasets` to support arbitrary iterables ([#17402](https://github.com/Lightning-AI/lightning/pull/17402))
- Run the DDP wrapper in a CUDA stream ([#17334](https://github.com/Lightning-AI/lightning/pull/17334))
- Added `SaveConfigCallback.save_config` to ease use cases such as saving the config to a logger ([#17475](https://github.com/Lightning-AI/lightning/pull/17475))
- Enabled optional file versioning of model checkpoints ([#17320](https://github.com/Lightning-AI/lightning/pull/17320))
- Added the process group timeout argument `FSDPStrategy(timeout=...)` for the FSDP strategy ([#17274](https://github.com/Lightning-AI/lightning/pull/17274))
- Added `FSDPStrategy(activation_checkpointing_policy=...)` to customize the layer policy for automatic activation checkpointing (requires torch>=2.1) ([#18045](https://github.com/Lightning-AI/lightning/pull/18045))
- Added CLI option `--map-to-cpu` to the checkpoint upgrade script to enable converting GPU checkpoints on a CPU-only machine ([#17527](https://github.com/Lightning-AI/lightning/pull/17527))
- Added non-layer param count to the model summary ([#17005](https://github.com/Lightning-AI/lightning/pull/17005))
- Updated `LearningRateMonitor` to log monitored values to `trainer.callback_metrics` ([#17626](https://github.com/Lightning-AI/lightning/pull/17626))
- Added `log_weight_decay` argument to `LearningRateMonitor` callback ([#18439](https://github.com/Lightning-AI/lightning/pull/18439))
- Added `Trainer.print()` to print on local rank zero only ([#17980](https://github.com/Lightning-AI/lightning/pull/17980))
- Added `Trainer.init_module()` context manager to instantiate large models efficiently directly on device, dtype ([#18004](https://github.com/Lightning-AI/lightning/pull/18004))
* Creates the model parameters in the desired dtype (`torch.float32`, `torch.float64`) depending on the 'true' precision choice in `Trainer(precision='32-true'|'64-true')`
- Added the `LightningModule.configure_model()` hook to instantiate large models efficiently directly on device, dtype, and with sharding support ([#18004](https://github.com/Lightning-AI/lightning/pull/18004))
* Handles initialization for FSDP models before wrapping and the Zero stage 3 initialization for DeepSpeed before sharding
- Added support for meta-device initialization with `Trainer.init_module(empty_init=True)` in FSDP ([#18385](https://github.com/Lightning-AI/lightning/pull/18385))
- Added `lightning.pytorch.plugins.PrecisionPlugin.module_init_context()` and `lightning.pytorch.strategies.Strategy.tensor_init_context()` context managers to control model and tensor instantiation ([#18004](https://github.com/Lightning-AI/lightning/pull/18004))
- Automatically call `xla_model.mark_step()` before saving checkpoints with XLA ([#17882](https://github.com/Lightning-AI/lightning/pull/17882))
- Added a callback for spike-detection ([#18014](https://github.com/Lightning-AI/lightning/pull/18014))
- Added the ability to set the `torch.distributed.fsdp.ShardingStrategy` via string in `FSDPStrategy` ([#18087](https://github.com/Lightning-AI/lightning/pull/18087))
- Improved error messages when attempting to load a DeepSpeed checkpoint at an invalid path ([#17795](https://github.com/Lightning-AI/lightning/pull/17795))
- Allowed accessing rank information in the main process before processes are launched when using the `XLAStrategy` ([#18194](https://github.com/Lightning-AI/lightning/pull/18194))
- Added support for true half-precision training via `Trainer(precision="16-true"|"bf16-true")` ([#18193](https://github.com/Lightning-AI/lightning/pull/18193), [#18217](https://github.com/Lightning-AI/lightning/pull/18217), [#18213](https://github.com/Lightning-AI/lightning/pull/18213), [#18219](https://github.com/Lightning-AI/lightning/pull/18219))
- Added automatic process cleanup to avoid zombie child processes and stalls when exceptions are raised ([#18218](https://github.com/Lightning-AI/lightning/pull/18218))
- Added validation of user input for `devices` and `num_nodes` when running with `SLURM` or `TorchElastic` ([#18292](https://github.com/Lightning-AI/lightning/pull/18292))
- Added support for saving checkpoints with either full state-dict or sharded state dict via `FSDPStrategy(state_dict_type="full"|"sharded")` ([#18364](https://github.com/Lightning-AI/lightning/pull/18364))
- Added support for loading sharded/distributed checkpoints in FSDP ([#18358](https://github.com/Lightning-AI/lightning/pull/18358))
- Made the text delimiter in the rich progress bar configurable ([#18372](https://github.com/Lightning-AI/lightning/pull/18372))
- Improved the error messaging and instructions when handling custom batch samplers in distributed settings ([#18402](https://github.com/Lightning-AI/lightning/pull/18402))
- Added support for mixed 8-bit precision as `Trainer(precision="transformer-engine")` using [Nvidia's Transformer Engine](https://docs.nvidia.com/deeplearning/transformer-engine) ([#18459](https://github.com/Lightning-AI/lightning/pull/18459))
- Added support for linear layer quantization with `Trainer(plugins=BitsandbytesPrecision())` using [bitsandbytes](https://github.com/TimDettmers/bitsandbytes) ([#18655](https://github.com/Lightning-AI/lightning/pull/18655))
- Added support for passing the process group to the `FSDPStrategy` ([#18583](https://github.com/Lightning-AI/lightning/pull/18583))
- Enabled the default process group configuration for FSDP's hybrid sharding ([#18583](https://github.com/Lightning-AI/lightning/pull/18583))
- Added `lightning.pytorch.utilities.suggested_max_num_workers` to assist with setting a good value in distributed settings ([#18591](https://github.com/Lightning-AI/lightning/pull/18591))
- Improved the `num_workers` warning to give a more accurate upper limit on the `num_workers` suggestion ([#18591](https://github.com/Lightning-AI/lightning/pull/18591))
- Added `lightning.pytorch.utilities.is_shared_filesystem` utility function to automatically check whether the filesystem is shared between machines ([#18586](https://github.com/Lightning-AI/lightning/pull/18586))
- Added support for returning an object of type `Mapping` from `LightningModule.training_step()` ([#18657](https://github.com/Lightning-AI/lightning/pull/18657))
- Added the hook `LightningModule.on_validation_model_zero_grad()` to allow overriding the behavior of zeroing the gradients before entering the validation loop ([#18710](https://github.com/Lightning-AI/lightning/pull/18710))
### Changed
- Changed default metric formatting from `round(..., 3)` to `".3f"` format string in `MetricsTextColumn` class ([#18483](https://github.com/Lightning-AI/lightning/pull/18483))
- Removed the limitation to call `self.trainer.model.parameters()` in `LightningModule.configure_optimizers()` ([#17309](https://github.com/Lightning-AI/lightning/pull/17309))
- `Trainer(accelerator="tpu", devices=[i])"` now selects the i-th TPU core (0-based, previously it was 1-based) ([#17227](https://github.com/Lightning-AI/lightning/pull/17227))
- Allow using iterable-style datasets with TPUs ([#17331](https://github.com/Lightning-AI/lightning/pull/17331))
- Increased the minimum XLA requirement to 1.13 ([#17368](https://github.com/Lightning-AI/lightning/pull/17368))
- `self.log`ed tensors are now kept in the original device to reduce unnecessary host-to-device synchronizations ([#17334](https://github.com/Lightning-AI/lightning/pull/17334))
- Made the run initialization in `WandbLogger` lazy to avoid creating artifacts when the CLI is used ([#17573](https://github.com/Lightning-AI/lightning/pull/17573))
- Simplified redirection of `*_step` methods in strategies by removing the `_LightningModuleWrapperBase` wrapper module ([#17531](https://github.com/Lightning-AI/lightning/pull/17531))
- Support kwargs input for LayerSummary ([#17709](https://github.com/Lightning-AI/lightning/pull/17709))
- Dropped support for `wandb` versions older than 0.12.0 in `WandbLogger` ([#17876](https://github.com/Lightning-AI/lightning/pull/17876))
- During `LightningModule.setup()`, the `self.device` now returns the device the module will be placed on instead of `cpu` ([#18021](https://github.com/Lightning-AI/lightning/pull/18021))
- Increased the minimum supported `wandb` version for `WandbLogger` from 0.12.0 to 0.12.10 ([#18171](https://github.com/Lightning-AI/lightning/pull/18171))
- The input tensors now get cast to the right precision type before transfer to the device ([#18264](https://github.com/Lightning-AI/lightning/pull/18264))
- Improved the formatting of emitted warnings ([#18288](https://github.com/Lightning-AI/lightning/pull/18288))
- Broadcast and reduction of tensors with XLA-based strategies now preserve the input's device ([#18275](https://github.com/Lightning-AI/lightning/pull/18275))
- The `FSDPStrategy` now loads checkpoints after the `configure_model`/`configure_sharded_model` hook ([#18358](https://github.com/Lightning-AI/lightning/pull/18358))
- The `FSDPStrategy.load_optimizer_state_dict` and `FSDPStrategy.load_model_state_dict` are a no-op now ([#18358](https://github.com/Lightning-AI/lightning/pull/18358))
- The `Trainer.num_val_batches`, `Trainer.num_test_batches` and `Trainer.num_sanity_val_batches` now return a list of sizes per dataloader instead of a single integer ([#18441](https://github.com/Lightning-AI/lightning/pull/18441))
- The `*_step(dataloader_iter)` flavor now no longer takes the `batch_idx` in the signature ([#18390](https://github.com/Lightning-AI/lightning/pull/18390))
- Calling `next(dataloader_iter)` now returns a triplet `(batch, batch_idx, dataloader_idx)` ([#18390](https://github.com/Lightning-AI/lightning/pull/18390))
- Calling `next(combined_loader)` now returns a triplet `(batch, batch_idx, dataloader_idx)` ([#18390](https://github.com/Lightning-AI/lightning/pull/18390))
- Due to lack of reliability, Trainer now only runs on one GPU instead of all GPUs in a Jupyter notebook if `devices="auto"` (default) ([#18291](https://github.com/Lightning-AI/lightning/pull/18291))
- Made the `batch_idx` argument optional in `validation_step`, `test_step` and `predict_step` to maintain consistency with `training_step` ([#18512](https://github.com/Lightning-AI/lightning/pull/18512))
- The `TQDMProgressBar` now consistently shows it/s for the speed even when the iteration time becomes larger than one second ([#18593](https://github.com/Lightning-AI/lightning/pull/18593))
- The `LightningDataModule.load_from_checkpoint` and `LightningModule.load_from_checkpoint` methods now raise an error if they are called on an instance instead of the class ([#18432](https://github.com/Lightning-AI/lightning/pull/18432))
- Enabled launching via `torchrun` in a SLURM environment; the `TorchElasticEnvironment` now gets chosen over the `SLURMEnvironment` if both are detected ([#18618](https://github.com/Lightning-AI/lightning/pull/18618))
- If not set by the user, Lightning will set `OMP_NUM_THREADS` to `num_cpus / num_processes` when launching subprocesses (e.g. when DDP is used) to avoid system overload for CPU-intensive tasks ([#18677](https://github.com/Lightning-AI/lightning/pull/18677))
- The `ModelCheckpoint` no longer deletes files under the save-top-k mechanism when resuming from a folder that is not the same as the current checkpoint folder ([#18750](https://github.com/Lightning-AI/lightning/pull/18750))
- The `ModelCheckpoint` no longer deletes the file that was passed to `Trainer.fit(ckpt_path=...)` ([#18750](https://github.com/Lightning-AI/lightning/pull/18750))
### Deprecated
- Deprecated the `SingleTPUStrategy` (`strategy="single_tpu"`) in favor of `SingleDeviceXLAStrategy` (`strategy="single_xla"`) ([#17383](https://github.com/Lightning-AI/lightning/pull/17383))
- Deprecated the `TPUAccelerator` in favor of `XLAAccelerator` ([#17383](https://github.com/Lightning-AI/lightning/pull/17383))
- Deprecated the `TPUPrecisionPlugin` in favor of `XLAPrecisionPlugin` ([#17383](https://github.com/Lightning-AI/lightning/pull/17383))
- Deprecated the `TPUBf16PrecisionPlugin` in favor of `XLABf16PrecisionPlugin` ([#17383](https://github.com/Lightning-AI/lightning/pull/17383))
- Deprecated the `Strategy.post_training_step` method ([#17531](https://github.com/Lightning-AI/lightning/pull/17531))
- Deprecated the `LightningModule.configure_sharded_model` hook in favor of `LightningModule.configure_model` ([#18004](https://github.com/Lightning-AI/lightning/pull/18004))
- Deprecated the `LightningDoublePrecisionModule` wrapper in favor of calling `Trainer.precision_plugin.convert_input()` ([#18209](https://github.com/Lightning-AI/lightning/pull/18209))
### Removed
- Removed the `XLAStrategy.is_distributed` property. It is always True ([#17381](https://github.com/Lightning-AI/lightning/pull/17381))
- Removed the `SingleTPUStrategy.is_distributed` property. It is always False ([#17381](https://github.com/Lightning-AI/lightning/pull/17381))
- Removed experimental support for `torchdistx` due to a lack of project maintenance ([#17995](https://github.com/Lightning-AI/lightning/pull/17995))
- Removed support for PyTorch 1.11 ([#18691](https://github.com/Lightning-AI/lightning/pull/18691))
### Fixed
- Fixed an issue with reusing the same model across multiple trainer stages when using the `DeepSpeedStrategy` ([#17531](https://github.com/Lightning-AI/lightning/pull/17531))
- Fixed the saving and loading of FSDP optimizer states ([#17819](https://github.com/Lightning-AI/lightning/pull/17819))
- Fixed FSDP re-applying activation checkpointing when the user had manually applied it already ([#18006](https://github.com/Lightning-AI/lightning/pull/18006))
- Fixed issue where unexpected exceptions would leave the default torch dtype modified when using true precision settings ([#18500](https://github.com/Lightning-AI/lightning/pull/18500))
- Fixed issue where not including the `batch_idx` argument in the `training_step` would disable gradient accumulation ([#18619](https://github.com/Lightning-AI/lightning/pull/18619))
- Fixed the replacement of callbacks returned in `LightningModule.configure_callbacks` when the callback was a subclass of an existing Trainer callback ([#18508](https://github.com/Lightning-AI/lightning/pull/18508))
- Fixed `Trainer.log_dir` not returning the correct directory for the `CSVLogger` ([#18548](https://github.com/Lightning-AI/lightning/pull/18548))
- Fixed redundant input-type casting in FSDP precision ([#18630](https://github.com/Lightning-AI/lightning/pull/18630))
- Fixed numerical issues when reducing values in low precision with `self.log` ([#18686](https://github.com/Lightning-AI/lightning/pull/18686))
- Fixed an issue that would cause the gradients to be erased if validation happened in the middle of a gradient accumulation phase ([#18710](https://github.com/Lightning-AI/lightning/pull/18710))
- Fixed redundant file writes in `CSVLogger` ([#18567](https://github.com/Lightning-AI/lightning/pull/18567))
- Fixed an issue that could lead to checkpoint files being deleted accidentally when resuming training ([#18750](https://github.com/Lightning-AI/lightning/pull/18750))
@ -332,9 +151,6 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).
- Properly manage `fetcher.done` with `dataloader_iter` ([#18376](https://github.com/Lightning-AI/lightning/pull/18376))
- Fixed redundant file writes in `CSVLogger` ([#18567](https://github.com/Lightning-AI/lightning/pull/18567))
## [2.0.7] - 2023-08-14
### Added
@ -406,7 +222,7 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).
- Fixed computing the next version folder in `CSVLogger` ([#17139](https://github.com/Lightning-AI/lightning/pull/17139))
- Fixed a formatting issue when the filename in `ModelCheckpoint` contained metrics that were substrings of each other ([#17610](https://github.com/Lightning-AI/lightning/pull/17610))
- Fixed `WandbLogger` ignoring the `WANDB_PROJECT` environment variable ([#16222](https://github.com/Lightning-AI/lightning/pull/16222))
- Fixed inconsistent settings for FSDP Precision ([#17670](https://github.com/Lightning-AI/lightning/issues/17670))
- Fixed inconsistent settings for FSDP Precision ([#17670](https://github.com/Lightning-AI/lightning/pull/17670))
- Fixed an edge case causing overlapping samples in DDP when no global seed is set ([#17713](https://github.com/Lightning-AI/lightning/pull/17713))
- Fallback to module available check for mlflow ([#17467](https://github.com/Lightning-AI/lightning/pull/17467))
- Fixed LR finder max val batches ([#17636](https://github.com/Lightning-AI/lightning/pull/17636))
@ -595,7 +411,7 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).
- Removed the experimental `PL_INTER_BATCH_PARALLELISM` environment flag ([#16355](https://github.com/Lightning-AI/lightning/pull/16355))
- Removed the `Trainer(move_metrics_to_cpu=True)` argument ([#16358](https://github.com/Lightning-AI/lightning/pull/16358))
- Removed the `LightningModule.precision` attribute ([#16203](https://github.com/Lightning-AI/lightning/pull/16203))
- Removed the automatic addition of a moving average of the `training_step` loss in the progress bar. Use `self.log("loss", ..., prog_bar=True)` instead. ([#16192](https://github.com/Lightning-AI/lightning/issues/16192))
- Removed the automatic addition of a moving average of the `training_step` loss in the progress bar. Use `self.log("loss", ..., prog_bar=True)` instead. ([#16192](https://github.com/Lightning-AI/lightning/pull/16192))
- Removed support for passing a dictionary value to `self.log()` ([#16389](https://github.com/Lightning-AI/lightning/pull/16389))
- Removed `Trainer.model` setter ([#16462](https://github.com/Lightning-AI/lightning/pull/16462))
- Removed the argument `Trainer(multiple_trainloader_mode=...)`. You can use `CombinedLoader(..., mode=...)` directly now ([#16800](https://github.com/Lightning-AI/lightning/pull/16800))
@ -1584,7 +1400,7 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).
- Deprecated `PrecisionPlugin.on_{save,load}_checkpoint` in favor of `PrecisionPlugin.{state_dict,load_state_dict}` ([#11978](https://github.com/Lightning-AI/lightning/pull/11978))
- Deprecated `LightningDataModule.on_save/load_checkpoint` in favor of `state_dict/load_state_dict` ([#11893](https://github.com/Lightning-AI/lightning/pull/11893))
- Deprecated `Trainer.use_amp` in favor of `Trainer.amp_backend` ([#12312](https://github.com/Lightning-AI/lightning/pull/12312))
- Deprecated `LightingModule.use_amp` in favor of `Trainer.amp_backend` ([#12315](https://github.com/Lightning-AI/lightning/pull/12315))
- Deprecated `LightningModule.use_amp` in favor of `Trainer.amp_backend` ([#12315](https://github.com/Lightning-AI/lightning/pull/12315))
- Deprecated specifying the process group backend through the environment variable `PL_TORCH_DISTRIBUTED_BACKEND` ([#11745](https://github.com/Lightning-AI/lightning/pull/11745))
- Deprecated `ParallelPlugin.torch_distributed_backend` in favor of `DDPStrategy.process_group_backend` property ([#11745](https://github.com/Lightning-AI/lightning/pull/11745))
- Deprecated `ModelCheckpoint.save_checkpoint` in favor of `Trainer.save_checkpoint` ([#12456](https://github.com/Lightning-AI/lightning/pull/12456))
@ -2105,7 +1921,7 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).
- Removed `Plugin` in `base_plugin.py` in favor of accessing `TrainingTypePlugin` and `PrecisionPlugin` directly instead ([#9066](https://github.com/Lightning-AI/lightning/pull/9066))
- Removed `teardown` from `ParallelPlugin` ([#8943](https://github.com/Lightning-AI/lightning/pull/8943))
- Removed deprecated `profiled_functions` argument from `PyTorchProfiler` ([#9178](https://github.com/Lightning-AI/lightning/pull/9178))
- Removed deprecated `pytorch_lighting.utilities.argparse_utils` module ([#9166](https://github.com/Lightning-AI/lightning/pull/9166))
- Removed deprecated `pytorch_lightning.utilities.argparse_utils` module ([#9166](https://github.com/Lightning-AI/lightning/pull/9166))
- Removed deprecated property `Trainer.running_sanity_check` in favor of `Trainer.sanity_checking` ([#9209](https://github.com/Lightning-AI/lightning/pull/9209))
- Removed deprecated `BaseProfiler.output_filename` arg from it and its descendants in favor of `dirpath` and `filename` ([#9214](https://github.com/Lightning-AI/lightning/pull/9214))
- Removed deprecated property `ModelCheckpoint.period` in favor of `ModelCheckpoint.every_n_epochs` ([#9213](https://github.com/Lightning-AI/lightning/pull/9213))

View File

@ -1 +1 @@
2.1.0.rc1
2.1.0