diff --git a/.pyrightconfig.json b/.pyrightconfig.json index 97000d69dd..5f5c753023 100644 --- a/.pyrightconfig.json +++ b/.pyrightconfig.json @@ -7,7 +7,7 @@ "pytorch_lightning/__init__.py", "pytorch_lightning/callbacks", "pytorch_lightning/core", - "pytorch_lightning/accelerators", + "pytorch_lightning/accelerator_backends", "pytorch_lightning/loggers", "pytorch_lightning/logging", "pytorch_lightning/metrics", diff --git a/docs/source/conf.py b/docs/source/conf.py index 8545c05acf..fd872a196a 100644 --- a/docs/source/conf.py +++ b/docs/source/conf.py @@ -138,7 +138,7 @@ language = None exclude_patterns = [ 'api/pytorch_lightning.rst', 'api/pl_examples.*', - 'api/pytorch_lightning.accelerators.*', + 'api/pytorch_lightning.accelerator_backends.*', 'api/modules.rst', 'PULL_REQUEST_TEMPLATE.md', diff --git a/pytorch_lightning/accelerator_backends/__init__.py b/pytorch_lightning/accelerator_backends/__init__.py new file mode 100644 index 0000000000..5c6544c48e --- /dev/null +++ b/pytorch_lightning/accelerator_backends/__init__.py @@ -0,0 +1,3 @@ +from pytorch_lightning.accelerator_backends.gpu_backend import GPUBackend +from pytorch_lightning.accelerator_backends.tpu_backend import TPUBackend +from pytorch_lightning.accelerator_backends.dp_backend import DataParallelBackend diff --git a/pytorch_lightning/accelerator_backends/dp_backend.py b/pytorch_lightning/accelerator_backends/dp_backend.py new file mode 100644 index 0000000000..c3225e60d0 --- /dev/null +++ b/pytorch_lightning/accelerator_backends/dp_backend.py @@ -0,0 +1,117 @@ +import torch +from pytorch_lightning.utilities.exceptions import MisconfigurationException +from pytorch_lightning.overrides.data_parallel import LightningDataParallel +from torch import optim + +try: + from apex import amp +except ImportError: + APEX_AVAILABLE = False +else: + APEX_AVAILABLE = True + + +class DataParallelBackend(object): + + def __init__(self, trainer): + self.trainer = trainer + self.model_autocast_original_forward = None + + def setup(self, model): + # call setup after the ddp process has connected + if not self.trainer.testing: + self.trainer.setup('fit') + model.setup('fit') + + # put model on correct device + model.cuda(self.trainer.root_gpu) + + # CHOOSE OPTIMIZER + # allow for lr schedulers as well + optimizers, lr_schedulers, optimizer_frequencies = self.trainer.init_optimizers(model) + self.trainer.optimizers = optimizers + self.trainer.lr_schedulers = lr_schedulers + self.trainer.optimizer_frequencies = optimizer_frequencies + + # hack forward to do autocast for the user + self.model_autocast_original_forward = model.forward + + # init half precision + if self.trainer.use_amp: + model = self.__init_half_precision(model) + + # init torch data parallel + model = self.__init_torch_data_parallel(model) + + self.trainer.model = model + + def __init_torch_data_parallel(self, model): + # create list of device ids + device_ids = self.trainer.data_parallel_device_ids + if isinstance(device_ids, int): + device_ids = list(range(device_ids)) + + # set dp device + torch.cuda.set_device(self.trainer.root_gpu) + model = LightningDataParallel(model, device_ids=device_ids) + return model + + def __init_half_precision(self, model): + native_amp_available = hasattr(torch.cuda, "amp") and hasattr(torch.cuda.amp, "autocast") + + if native_amp_available: + self.__init_native_amp(model) + else: + model = self.__init_nvidia_apex(model) + return model + + def __init_native_amp(self, model): + model.forward = torch.cuda.amp.autocast()(model.forward) + + def __init_nvidia_apex(self, model): + # check for this bug (amp + dp + !01 doesn't work) + # https://github.com/NVIDIA/apex/issues/227 + if self.trainer.amp_level == 'O2': + raise MisconfigurationException( + f'Amp level {self.trainer.amp_level} with DataParallel is not supported.' + f' See this note from NVIDIA for more info: https://github.com/NVIDIA/apex/issues/227.' + f' We recommend you switch to ddp if you want to use amp') + else: + model, optimizers = model.configure_apex(amp, model, self.trainer.optimizers, self.trainer.amp_level) + self.reinit_scheduler_properties(optimizers, self.trainer.lr_schedulers) + + return model + + def train(self): + model = self.trainer.model + results = self.trainer.run_pretrain_routine(model) + return results + + def teardown(self): + + # replace the original fwd function + self.trainer.model.forward = self.model_autocast_original_forward + + def reinit_scheduler_properties(self, optimizers: list, schedulers: list): + """ + Reinitialize optimizer.step properties added by schedulers + """ + for scheduler in schedulers: + scheduler = scheduler['scheduler'] + + for optimizer in optimizers: + # check that we dont mix users optimizers and schedulers + if scheduler.optimizer == optimizer: + # Find the mro belonging to the base lr scheduler class + for i, mro in enumerate(scheduler.__class__.__mro__): + is_regular_scheduler = optim.lr_scheduler._LRScheduler + is_lr_reduce_on_plateau = optim.lr_scheduler.ReduceLROnPlateau + if is_regular_scheduler or is_lr_reduce_on_plateau: + idx = i + state = scheduler.state_dict() + else: + state = None + + scheduler.__class__.__mro__[idx].__init__(scheduler, optimizer) + if state is not None: + scheduler.load_state_dict(state) diff --git a/pytorch_lightning/accelerators/gpu_accelerator.py b/pytorch_lightning/accelerator_backends/gpu_backend.py similarity index 83% rename from pytorch_lightning/accelerators/gpu_accelerator.py rename to pytorch_lightning/accelerator_backends/gpu_backend.py index 5ef421810d..81128e1009 100644 --- a/pytorch_lightning/accelerators/gpu_accelerator.py +++ b/pytorch_lightning/accelerator_backends/gpu_backend.py @@ -14,13 +14,21 @@ import torch +try: + from apex import amp +except ImportError: + APEX_AVAILABLE = False +else: + APEX_AVAILABLE = True -class GPUAccelerator(object): + +class GPUBackend(object): def __init__(self, trainer): self.trainer = trainer def setup(self, model): + # call setup if not self.trainer.testing: self.trainer.setup('fit') @@ -38,9 +46,15 @@ class GPUAccelerator(object): # TODO: remove with dropping NVIDIA AMP support native_amp_available = hasattr(torch.cuda, "amp") and hasattr(torch.cuda.amp, "autocast") if self.trainer.use_amp and not native_amp_available: - self._setup_nvidia_apex(model) + model = self._setup_nvidia_apex(model) + return model + + def train(self, model): + results = self.trainer.run_pretrain_routine(model) + return results def _setup_nvidia_apex(self, model): model, optimizers = model.configure_apex(amp, model, self.trainer.optimizers, self.trainer.amp_level) self.trainer.optimizers = optimizers self.trainer.reinit_scheduler_properties(self.trainer.optimizers, self.trainer.lr_schedulers) + return model diff --git a/pytorch_lightning/accelerators/tpu_accelerator.py b/pytorch_lightning/accelerator_backends/tpu_backend.py similarity index 99% rename from pytorch_lightning/accelerators/tpu_accelerator.py rename to pytorch_lightning/accelerator_backends/tpu_backend.py index fcf9998502..27b6ce0f92 100644 --- a/pytorch_lightning/accelerators/tpu_accelerator.py +++ b/pytorch_lightning/accelerator_backends/tpu_backend.py @@ -28,7 +28,7 @@ else: XLA_AVAILABLE = True -class TPUAccelerator(object): +class TPUBackend(object): def __init__(self, trainer): self.trainer = trainer diff --git a/pytorch_lightning/accelerators/__init__.py b/pytorch_lightning/accelerators/__init__.py deleted file mode 100644 index 1f9d38b157..0000000000 --- a/pytorch_lightning/accelerators/__init__.py +++ /dev/null @@ -1,2 +0,0 @@ -from pytorch_lightning.accelerators.gpu_accelerator import GPUAccelerator -from pytorch_lightning.accelerators.tpu_accelerator import TPUAccelerator diff --git a/pytorch_lightning/trainer/distrib_parts.py b/pytorch_lightning/trainer/distrib_parts.py index db9b04b46f..3c0461e713 100644 --- a/pytorch_lightning/trainer/distrib_parts.py +++ b/pytorch_lightning/trainer/distrib_parts.py @@ -179,52 +179,6 @@ class TrainerDPMixin(ABC): return model.transfer_batch_to_device(batch, device) return move_data_to_device(batch, device) - def dp_train(self, model): - # call setup after the ddp process has connected - if not self.testing: - self.setup('fit') - model.setup('fit') - - model.cuda(self.root_gpu) - - # CHOOSE OPTIMIZER - # allow for lr schedulers as well - self.optimizers, self.lr_schedulers, self.optimizer_frequencies = self.init_optimizers(model) - - # hack forward to do autocast for the user - model_autocast_original_forward = model.forward - if self.use_amp and NATIVE_AMP_AVALAIBLE and not self.use_tpu: - # wrap the user's forward in autocast and give it back at the end - model.forward = torch.cuda.amp.autocast()(model.forward) - - # TODO: remove with dropping NVIDIA AMP support - # check for this bug (amp + dp + !01 doesn't work) - # https://github.com/NVIDIA/apex/issues/227 - if self.use_dp and self.use_amp and not NATIVE_AMP_AVALAIBLE and not self.use_tpu: - if self.amp_level == 'O2': - raise MisconfigurationException( - f'Amp level {self.amp_level} with DataParallel is not supported.' - f' See this note from NVIDIA for more info: https://github.com/NVIDIA/apex/issues/227.' - f' We recommend you switch to ddp if you want to use amp') - else: - model, optimizers = model.configure_apex(amp, model, self.optimizers, self.amp_level) - self.reinit_scheduler_properties(optimizers, self.lr_schedulers) - - # create list of device ids - device_ids = self.data_parallel_device_ids - if isinstance(device_ids, int): - device_ids = list(range(device_ids)) - - # set dp device - torch.cuda.set_device(self.root_gpu) - - model = LightningDataParallel(model, device_ids=device_ids) - - result = self.run_pretrain_routine(model) - model.forward = model_autocast_original_forward - - return result - def horovod_train(self, model): # call setup after the ddp process has connected if not self.testing: diff --git a/pytorch_lightning/trainer/trainer.py b/pytorch_lightning/trainer/trainer.py index 18fbd53291..37970ae599 100644 --- a/pytorch_lightning/trainer/trainer.py +++ b/pytorch_lightning/trainer/trainer.py @@ -51,7 +51,7 @@ from pytorch_lightning.utilities import parsing, rank_zero_info, rank_zero_only, from pytorch_lightning.utilities.debugging import InternalDebugger from pytorch_lightning.utilities.exceptions import MisconfigurationException from pytorch_lightning.trainer.configuration_validator import ConfigValidator -from pytorch_lightning.accelerators import GPUAccelerator, TPUAccelerator +from pytorch_lightning.accelerator_backends import GPUBackend, TPUBackend, DataParallelBackend # warnings to ignore in trainer warnings.filterwarnings( @@ -661,7 +661,7 @@ class Trainer( # tracks internal state for debugging self.dev_debugger = InternalDebugger(self) self.config_validator = ConfigValidator(self) - self.accelerator = None + self.accelerator_backend = None # Callback system self.on_init_end() @@ -1064,24 +1064,25 @@ class Trainer( self.set_random_port() results = self.spawn_ddp_children(model) - # 1 gpu or dp option triggers training using DP module - # easier to avoid NCCL issues elif self.use_dp: - results = self.dp_train(model) + self.accelerator_backend = DataParallelBackend(self) + self.accelerator_backend.setup(model) + results = self.accelerator_backend.train() + self.accelerator_backend.teardown() elif self.use_horovod: results = self.horovod_train(model) elif self.single_gpu: - self.accelerator = GPUAccelerator(self) - self.accelerator.setup(model) - results = self.run_pretrain_routine(model) + self.accelerator_backend = GPUBackend(self) + model = self.accelerator_backend.setup(model) + results = self.accelerator_backend.train(model) elif self.use_tpu: - self.accelerator = TPUAccelerator(self) - self.accelerator.setup() - self.accelerator.train(model) - self.accelerator.teardown() + self.accelerator_backend = TPUBackend(self) + self.accelerator_backend.setup() + self.accelerator_backend.train(model) + self.accelerator_backend.teardown() # ON CPU else: diff --git a/tests/models/test_test_loop.py b/tests/models/test_test_loop.py index c65809ad25..10d8d35800 100644 --- a/tests/models/test_test_loop.py +++ b/tests/models/test_test_loop.py @@ -38,6 +38,9 @@ def test_single_gpu_test(tmpdir): def test_dp_test(tmpdir): tutils.set_random_master_port() + import os + os.environ['CUDA_VISIBLE_DEVICES'] = '0,1' + model = EvalModelTemplate() trainer = pl.Trainer( default_root_dir=os.getcwd(),