Merge branch 'master' of https://github.com/williamFalcon/pytorch-lightning
This commit is contained in:
commit
4a74bb98da
165
README.md
165
README.md
|
@ -1,27 +1,160 @@
|
|||
# Pytorch-lightning
|
||||
Seed for ML research
|
||||
The Keras for ML-researchers in PyTorch.
|
||||
|
||||
## Usage
|
||||
To use lightning, first define a trainer function:
|
||||
|
||||
### Add new model
|
||||
1. Create a new model under /models.
|
||||
2. Add model name to trainer_main
|
||||
```python
|
||||
AVAILABLE_MODELS = {
|
||||
'model_1': ExampleModel1
|
||||
}
|
||||
# trainer.py
|
||||
|
||||
from pytorch_lightning.models.trainer import Trainer
|
||||
from pytorch_lightning.utils.pt_callbacks import EarlyStopping, ModelCheckpoint
|
||||
from my_project import My_Model
|
||||
from test_tube import HyperOptArgumentParser, Experiment, SlurmCluster
|
||||
|
||||
# --------------
|
||||
# TEST TUBE INIT
|
||||
exp = Experiment(
|
||||
name='my_exp',
|
||||
debug=True,
|
||||
save_dir='/some/path',
|
||||
autosave=False,
|
||||
description='my desc'
|
||||
)
|
||||
|
||||
# --------------------
|
||||
# CALLBACKS
|
||||
early_stop = EarlyStopping(
|
||||
monitor='val_loss',
|
||||
patience=3,
|
||||
verbose=True,
|
||||
mode='min'
|
||||
)
|
||||
|
||||
model_save_path = 'PATH/TO/SAVE'
|
||||
checkpoint = ModelCheckpoint(
|
||||
filepath=model_save_path,
|
||||
save_function=None,
|
||||
save_best_only=True,
|
||||
verbose=True,
|
||||
monitor='val_acc',
|
||||
mode='min'
|
||||
)
|
||||
|
||||
# configure trainer
|
||||
trainer = Trainer(
|
||||
experiment=experiment,
|
||||
cluster=cluster,
|
||||
checkpoint_callback=checkpoint,
|
||||
early_stop_callback=early_stop
|
||||
)
|
||||
|
||||
# init model and train
|
||||
model = My_Model()
|
||||
trainer.fit(model)
|
||||
```
|
||||
|
||||
### Model methods that can be implemented
|
||||
next define a model that implements these 10 functions:
|
||||
```python
|
||||
import torch.nn as nn
|
||||
|
||||
class ExampleModel(RootModule):
|
||||
def __init__(self):
|
||||
# define model
|
||||
|
||||
# ---------------
|
||||
# TRAINING
|
||||
def training_step(self, data_batch):
|
||||
x, y = data_batch
|
||||
y_hat = self.l1(x)
|
||||
loss = some_loss(y_hat)
|
||||
|
||||
return loss_val, {'train_loss': loss}
|
||||
|
||||
def validation_step(self, data_batch):
|
||||
x, y = data_batch
|
||||
y_hat = self.l1(x)
|
||||
loss = some_loss(y_hat)
|
||||
|
||||
return loss_val, {'val_loss': loss}
|
||||
|
||||
def validation_end(self, outputs):
|
||||
total_accs = []
|
||||
|
||||
for output in outputs:
|
||||
total_accs.append(output['val_acc'].item())
|
||||
|
||||
# return a dict
|
||||
return {'total_acc': np.mean(total_accs)}
|
||||
|
||||
# ---------------
|
||||
# SAVING
|
||||
def get_save_dict(self):
|
||||
# lightning saves for you. Here's your chance to say what you want to save
|
||||
checkpoint = {'state_dict': self.state_dict()}
|
||||
|
||||
return checkpoint
|
||||
|
||||
def load_model_specific(self, checkpoint):
|
||||
# lightning loads for you. Here's your chance to say what you want to load
|
||||
self.load_state_dict(checkpoint['state_dict'])
|
||||
|
||||
# ---------------
|
||||
# TRAINING CONFIG
|
||||
def configure_optimizers(self):
|
||||
# give lightning the list of optimizers you want to use.
|
||||
# lightning will call automatically
|
||||
optimizer = self.choose_optimizer('adam', self.parameters(), {'lr': self.hparams.learning_rate}, 'optimizer')
|
||||
return [optimizer]
|
||||
|
||||
@property
|
||||
def tng_dataloader(self):
|
||||
return pytorch_dataloader('train')
|
||||
|
||||
@property
|
||||
def val_dataloader(self):
|
||||
return pytorch_dataloader('val')
|
||||
|
||||
@property
|
||||
def test_dataloader(self):
|
||||
return pytorch_dataloader('test')
|
||||
|
||||
# ---------------
|
||||
# MODIFY YOUR COMMAND LINE ARGS
|
||||
@staticmethod
|
||||
def add_model_specific_args(parent_parser):
|
||||
parser = HyperOptArgumentParser(strategy=parent_parser.strategy, parents=[parent_parser])
|
||||
parser.add_argument('--out_features', default=20)
|
||||
return parser
|
||||
```
|
||||
### Details
|
||||
|
||||
#### Model definition
|
||||
| Name | Description | Input | Return |
|
||||
|---|---|---|---|
|
||||
| training_step | Called with a batch of data during training | data from your dataloaders | tuple: scalar, dict |
|
||||
| validation_step | Called with a batch of data during validation | data from your dataloaders | tuple: scalar, dict |
|
||||
| validation_end | Collate metrics from all validation steps | outputs: array where each item is the output of a validation step | dict: for logging |
|
||||
| get_save_dict | called when your model needs to be saved (checkpoints, hpc save, etc...) | None | dict to be saved |
|
||||
|
||||
#### Model training
|
||||
| Name | Description | Input | Return |
|
||||
|---|---|---|---|
|
||||
| configure_optimizers | called during training setup | None | list: optimizers you want to use |
|
||||
| tng_dataloader | called during training | None | pytorch dataloader |
|
||||
| val_dataloader | called during validation | None | pytorch dataloader |
|
||||
| test_dataloader | called during testing | None | pytorch dataloader |
|
||||
| add_model_specific_args | called with args you defined in your main. This lets you tailor args for each model and keep main the same | argparse | argparse |
|
||||
|
||||
#### Model Saving/Loading
|
||||
| Name | Description | Input | Return |
|
||||
|---|---|---|---|
|
||||
| get_save_dict | called when your model needs to be saved (checkpoints, hpc save, etc...) | None | dict to be saved |
|
||||
| load_model_specific | called when loading a model | checkpoint: dict you created in get_save_dict | dict: modified in whatever way you want |
|
||||
|
||||
## Optional model hooks.
|
||||
Add these to the model whenever you want to configure training behavior.
|
||||
|
||||
| Method | Purpose | Input | Output | Required |
|
||||
|---|---|---|---|---|
|
||||
| forward() | Forward pass | model_in tuple with your data | model_out tuple to be passed to loss | Y |
|
||||
| loss() | calculate model loss | model_out tuple from forward() | A scalar | Y |
|
||||
| check_performance() | run a full loop through val data to check for metrics | dataloader, nb_tests | metrics tuple to be tracked | Y |
|
||||
| tng_dataloader | Computed option, used to feed tng data | - | Pytorch DataLoader subclass | Y |
|
||||
| val_dataloader | Computed option, used to feed tng data | - | Pytorch DataLoader subclass | Y |
|
||||
| test_dataloader | Computed option, used to feed tng data | - | Pytorch DataLoader subclass | Y |
|
||||
|
||||
### Model lifecycle hooks
|
||||
Use these hooks to customize functionality
|
||||
|
|
Loading…
Reference in New Issue