diff --git a/docs/Trainer/Training Loop.md b/docs/Trainer/Training Loop.md index 2881285054..f7ad91da4b 100644 --- a/docs/Trainer/Training Loop.md +++ b/docs/Trainer/Training Loop.md @@ -54,7 +54,10 @@ trainer = Trainer(track_grad_norm=2) --- #### Set how much of the training set to check -If you don't want to check 100% of the training set (for debugging or if it's huge), set this flag +If you don't want to check 100% of the training set (for debugging or if it's huge), set this flag. + +train_percent_check will be overwritten by overfit_pct if `overfit_pct > 0` + ``` {.python} # DEFAULT trainer = Trainer(train_percent_check=1.0) diff --git a/docs/Trainer/Validation loop.md b/docs/Trainer/Validation loop.md index 8d6c5bac46..091cc09506 100644 --- a/docs/Trainer/Validation loop.md +++ b/docs/Trainer/Validation loop.md @@ -18,6 +18,9 @@ trainer = Trainer(check_val_every_n_epoch=1) --- #### Set how much of the validation set to check If you don't want to check 100% of the validation set (for debugging or if it's huge), set this flag + +val_percent_check will be overwritten by overfit_pct if `overfit_pct > 0` + ``` {.python} # DEFAULT trainer = Trainer(val_percent_check=1.0) @@ -29,6 +32,9 @@ trainer = Trainer(val_percent_check=0.1) --- #### Set how much of the test set to check If you don't want to check 100% of the test set (for debugging or if it's huge), set this flag + +test_percent_check will be overwritten by overfit_pct if `overfit_pct > 0` + ``` {.python} # DEFAULT trainer = Trainer(test_percent_check=1.0) diff --git a/docs/Trainer/debugging.md b/docs/Trainer/debugging.md index 1cd247c1d9..296938ba3e 100644 --- a/docs/Trainer/debugging.md +++ b/docs/Trainer/debugging.md @@ -23,6 +23,9 @@ trainer = Trainer(track_grad_norm=2) --- #### Make model overfit on subset of data A useful debugging trick is to make your model overfit a tiny fraction of the data. + +setting `overfit_pct > 0` will overwrite train_percent_check, val_percent_check, test_percent_check + ``` {.python} # DEFAULT don't overfit (ie: normal training) trainer = Trainer(overfit_pct=0.0)