* always calls the lr scheduler with epoch nb * added docs for cluster grid search * added docs for cluster grid search * undo test changes * undo test changes
This commit is contained in:
parent
cf04ff73e9
commit
481aa24974
|
@ -966,7 +966,7 @@ class Trainer(TrainerIO):
|
|||
# update LR schedulers
|
||||
if self.lr_schedulers is not None:
|
||||
for lr_scheduler in self.lr_schedulers:
|
||||
lr_scheduler.step()
|
||||
lr_scheduler.step(self.current_epoch)
|
||||
|
||||
# early stopping
|
||||
met_min_epochs = epoch_nb > self.min_nb_epochs
|
||||
|
|
|
@ -7,7 +7,6 @@ import pytest
|
|||
import numpy as np
|
||||
import torch
|
||||
from test_tube import Experiment
|
||||
import time
|
||||
|
||||
# sys.path += [os.path.abspath('..'), os.path.abspath('../..')]
|
||||
from pytorch_lightning import Trainer
|
||||
|
@ -40,53 +39,6 @@ np.random.seed(SEED)
|
|||
# ------------------------------------------------------------------------
|
||||
# TESTS
|
||||
# ------------------------------------------------------------------------
|
||||
def test_running_test_pretrained_model_ddp():
|
||||
"""Verify test() on pretrained model"""
|
||||
if not can_run_gpu_test():
|
||||
return
|
||||
|
||||
hparams = get_hparams()
|
||||
model = LightningTestModel(hparams)
|
||||
|
||||
save_dir = init_save_dir()
|
||||
|
||||
# exp file to get meta
|
||||
exp = get_exp(False)
|
||||
exp.argparse(hparams)
|
||||
exp.save()
|
||||
|
||||
# exp file to get weights
|
||||
checkpoint = ModelCheckpoint(save_dir)
|
||||
|
||||
trainer_options = dict(
|
||||
show_progress_bar=False,
|
||||
max_nb_epochs=1,
|
||||
train_percent_check=0.4,
|
||||
val_percent_check=0.2,
|
||||
checkpoint_callback=checkpoint,
|
||||
experiment=exp,
|
||||
gpus=2,
|
||||
distributed_backend='ddp'
|
||||
)
|
||||
|
||||
# fit model
|
||||
trainer = Trainer(**trainer_options)
|
||||
result = trainer.fit(model)
|
||||
|
||||
# correct result and ok accuracy
|
||||
assert result == 1, 'training failed to complete'
|
||||
pretrained_model = load_model(exp, save_dir, on_gpu=True, module_class=LightningTestModel)
|
||||
|
||||
# run test set
|
||||
new_trainer = Trainer(**trainer_options)
|
||||
new_trainer.test(pretrained_model)
|
||||
|
||||
run_prediction(model.test_dataloader, pretrained_model)
|
||||
|
||||
# test we have good test accuracy
|
||||
clear_save_dir()
|
||||
|
||||
|
||||
def test_dp_resume():
|
||||
"""
|
||||
Make sure DP continues training correctly
|
||||
|
@ -170,6 +122,53 @@ def test_dp_resume():
|
|||
clear_save_dir()
|
||||
|
||||
|
||||
def test_running_test_pretrained_model_ddp():
|
||||
"""Verify test() on pretrained model"""
|
||||
if not can_run_gpu_test():
|
||||
return
|
||||
|
||||
hparams = get_hparams()
|
||||
model = LightningTestModel(hparams)
|
||||
|
||||
save_dir = init_save_dir()
|
||||
|
||||
# exp file to get meta
|
||||
exp = get_exp(False)
|
||||
exp.argparse(hparams)
|
||||
exp.save()
|
||||
|
||||
# exp file to get weights
|
||||
checkpoint = ModelCheckpoint(save_dir)
|
||||
|
||||
trainer_options = dict(
|
||||
show_progress_bar=False,
|
||||
max_nb_epochs=1,
|
||||
train_percent_check=0.4,
|
||||
val_percent_check=0.2,
|
||||
checkpoint_callback=checkpoint,
|
||||
experiment=exp,
|
||||
gpus=[0, 1],
|
||||
distributed_backend='ddp'
|
||||
)
|
||||
|
||||
# fit model
|
||||
trainer = Trainer(**trainer_options)
|
||||
result = trainer.fit(model)
|
||||
|
||||
# correct result and ok accuracy
|
||||
assert result == 1, 'training failed to complete'
|
||||
pretrained_model = load_model(exp, save_dir, on_gpu=True, module_class=LightningTestModel)
|
||||
|
||||
# run test set
|
||||
new_trainer = Trainer(**trainer_options)
|
||||
new_trainer.test(pretrained_model)
|
||||
|
||||
run_prediction(model.test_dataloader, pretrained_model)
|
||||
|
||||
# test we have good test accuracy
|
||||
clear_save_dir()
|
||||
|
||||
|
||||
def test_running_test_after_fitting():
|
||||
"""Verify test() on fitted model"""
|
||||
hparams = get_hparams()
|
||||
|
@ -250,28 +249,6 @@ def test_running_test_without_val():
|
|||
clear_save_dir()
|
||||
|
||||
|
||||
def test_multi_gpu_model_ddp():
|
||||
"""
|
||||
Make sure DDP works
|
||||
:return:
|
||||
"""
|
||||
if not can_run_gpu_test():
|
||||
return
|
||||
|
||||
os.environ['MASTER_PORT'] = str(np.random.randint(12000, 19000, 1)[0])
|
||||
model, hparams = get_model()
|
||||
trainer_options = dict(
|
||||
show_progress_bar=False,
|
||||
max_nb_epochs=1,
|
||||
train_percent_check=0.4,
|
||||
val_percent_check=0.2,
|
||||
gpus=2,
|
||||
distributed_backend='ddp'
|
||||
)
|
||||
|
||||
run_gpu_model_test(trainer_options, model, hparams)
|
||||
|
||||
|
||||
def test_running_test_pretrained_model():
|
||||
"""Verify test() on pretrained model"""
|
||||
hparams = get_hparams()
|
||||
|
@ -339,7 +316,7 @@ def test_running_test_pretrained_model_dp():
|
|||
val_percent_check=0.2,
|
||||
checkpoint_callback=checkpoint,
|
||||
experiment=exp,
|
||||
gpus=2,
|
||||
gpus=[0, 1],
|
||||
distributed_backend='dp'
|
||||
)
|
||||
|
||||
|
@ -431,6 +408,28 @@ def test_gradient_accumulation_scheduling():
|
|||
trainer.fit(model)
|
||||
|
||||
|
||||
def test_multi_gpu_model_ddp():
|
||||
"""
|
||||
Make sure DDP works
|
||||
:return:
|
||||
"""
|
||||
if not can_run_gpu_test():
|
||||
return
|
||||
|
||||
os.environ['MASTER_PORT'] = str(np.random.randint(12000, 19000, 1)[0])
|
||||
model, hparams = get_model()
|
||||
trainer_options = dict(
|
||||
show_progress_bar=False,
|
||||
max_nb_epochs=1,
|
||||
train_percent_check=0.4,
|
||||
val_percent_check=0.2,
|
||||
gpus=[0, 1],
|
||||
distributed_backend='ddp'
|
||||
)
|
||||
|
||||
run_gpu_model_test(trainer_options, model, hparams)
|
||||
|
||||
|
||||
def test_optimizer_return_options():
|
||||
|
||||
trainer = Trainer()
|
||||
|
@ -670,7 +669,7 @@ def test_amp_single_gpu():
|
|||
show_progress_bar=True,
|
||||
max_nb_epochs=1,
|
||||
gpus=1,
|
||||
distributed_backend='dp',
|
||||
distributed_backend='ddp',
|
||||
use_amp=True
|
||||
)
|
||||
|
||||
|
@ -979,6 +978,79 @@ def test_model_freeze_unfreeze():
|
|||
model.unfreeze()
|
||||
|
||||
|
||||
def test_amp_gpu_ddp_slurm_managed():
|
||||
"""
|
||||
Make sure DDP + AMP work
|
||||
:return:
|
||||
"""
|
||||
if not can_run_gpu_test():
|
||||
return
|
||||
|
||||
# simulate setting slurm flags
|
||||
os.environ['MASTER_PORT'] = str(np.random.randint(12000, 19000, 1)[0])
|
||||
os.environ['SLURM_LOCALID'] = str(0)
|
||||
|
||||
hparams = get_hparams()
|
||||
model = LightningTestModel(hparams)
|
||||
|
||||
trainer_options = dict(
|
||||
show_progress_bar=True,
|
||||
max_nb_epochs=1,
|
||||
gpus=[0],
|
||||
distributed_backend='ddp',
|
||||
use_amp=True
|
||||
)
|
||||
|
||||
save_dir = init_save_dir()
|
||||
|
||||
# exp file to get meta
|
||||
exp = get_exp(False)
|
||||
exp.argparse(hparams)
|
||||
exp.save()
|
||||
|
||||
# exp file to get weights
|
||||
checkpoint = ModelCheckpoint(save_dir)
|
||||
|
||||
# add these to the trainer options
|
||||
trainer_options['checkpoint_callback'] = checkpoint
|
||||
trainer_options['experiment'] = exp
|
||||
|
||||
# fit model
|
||||
trainer = Trainer(**trainer_options)
|
||||
trainer.is_slurm_managing_tasks = True
|
||||
result = trainer.fit(model)
|
||||
|
||||
# correct result and ok accuracy
|
||||
assert result == 1, 'amp + ddp model failed to complete'
|
||||
|
||||
# test root model address
|
||||
assert trainer.resolve_root_node_address('abc') == 'abc'
|
||||
assert trainer.resolve_root_node_address('abc[23]') == 'abc23'
|
||||
assert trainer.resolve_root_node_address('abc[23-24]') == 'abc23'
|
||||
assert trainer.resolve_root_node_address('abc[23-24, 45-40, 40]') == 'abc23'
|
||||
|
||||
# test model loading with a map_location
|
||||
pretrained_model = load_model(exp, save_dir, True)
|
||||
|
||||
# test model preds
|
||||
run_prediction(model.test_dataloader, pretrained_model)
|
||||
|
||||
if trainer.use_ddp:
|
||||
# on hpc this would work fine... but need to hack it for the purpose of the test
|
||||
trainer.model = pretrained_model
|
||||
trainer.optimizers, trainer.lr_schedulers = pretrained_model.configure_optimizers()
|
||||
|
||||
# test HPC loading / saving
|
||||
trainer.hpc_save(save_dir, exp)
|
||||
trainer.hpc_load(save_dir, on_gpu=True)
|
||||
|
||||
# test freeze on gpu
|
||||
model.freeze()
|
||||
model.unfreeze()
|
||||
|
||||
clear_save_dir()
|
||||
|
||||
|
||||
def test_cpu_model_with_amp():
|
||||
"""
|
||||
Make sure model trains on CPU
|
||||
|
@ -1149,7 +1221,7 @@ def test_ddp_sampler_error():
|
|||
experiment=exp,
|
||||
show_progress_bar=False,
|
||||
max_nb_epochs=1,
|
||||
gpus=2,
|
||||
gpus=[0, 1],
|
||||
distributed_backend='ddp',
|
||||
use_amp=True
|
||||
)
|
||||
|
@ -1228,79 +1300,6 @@ def test_multiple_test_dataloader():
|
|||
trainer.test()
|
||||
|
||||
|
||||
def test_amp_gpu_ddp_slurm_managed():
|
||||
"""
|
||||
Make sure DDP + AMP work
|
||||
:return:
|
||||
"""
|
||||
if not can_run_gpu_test():
|
||||
return
|
||||
|
||||
# simulate setting slurm flags
|
||||
os.environ['MASTER_PORT'] = str(np.random.randint(12000, 19000, 1)[0])
|
||||
os.environ['SLURM_LOCALID'] = str(0)
|
||||
os.environ['FAKE_SLURM_MANAGING_TASKS'] = str(1)
|
||||
|
||||
hparams = get_hparams()
|
||||
model = LightningTestModel(hparams)
|
||||
|
||||
trainer_options = dict(
|
||||
show_progress_bar=True,
|
||||
max_nb_epochs=1,
|
||||
gpus=2,
|
||||
distributed_backend='ddp',
|
||||
use_amp=True
|
||||
)
|
||||
|
||||
save_dir = init_save_dir()
|
||||
|
||||
# exp file to get meta
|
||||
exp = get_exp(False)
|
||||
exp.argparse(hparams)
|
||||
exp.save()
|
||||
|
||||
# exp file to get weights
|
||||
checkpoint = ModelCheckpoint(save_dir)
|
||||
|
||||
# add these to the trainer options
|
||||
trainer_options['checkpoint_callback'] = checkpoint
|
||||
trainer_options['experiment'] = exp
|
||||
|
||||
# fit model
|
||||
trainer = Trainer(**trainer_options)
|
||||
result = trainer.fit(model)
|
||||
|
||||
# correct result and ok accuracy
|
||||
assert result == 1, 'amp + ddp model failed to complete'
|
||||
|
||||
# test root model address
|
||||
assert trainer.resolve_root_node_address('abc') == 'abc'
|
||||
assert trainer.resolve_root_node_address('abc[23]') == 'abc23'
|
||||
assert trainer.resolve_root_node_address('abc[23-24]') == 'abc23'
|
||||
assert trainer.resolve_root_node_address('abc[23-24, 45-40, 40]') == 'abc23'
|
||||
|
||||
# test model loading with a map_location
|
||||
pretrained_model = load_model(exp, save_dir, True)
|
||||
|
||||
# test model preds
|
||||
run_prediction(model.test_dataloader, pretrained_model)
|
||||
|
||||
if trainer.use_ddp:
|
||||
# on hpc this would work fine... but need to hack it for the purpose of the test
|
||||
trainer.model = pretrained_model
|
||||
trainer.optimizers, trainer.lr_schedulers = pretrained_model.configure_optimizers()
|
||||
|
||||
# test HPC loading / saving
|
||||
trainer.hpc_save(save_dir, exp)
|
||||
trainer.hpc_load(save_dir, on_gpu=True)
|
||||
|
||||
# test freeze on gpu
|
||||
model.freeze()
|
||||
model.unfreeze()
|
||||
|
||||
clear_save_dir()
|
||||
|
||||
|
||||
# ------------------------------------------------------------------------
|
||||
# UTILS
|
||||
# ------------------------------------------------------------------------
|
||||
|
@ -1463,14 +1462,13 @@ def assert_ok_test_acc(trainer):
|
|||
|
||||
def can_run_gpu_test():
|
||||
if not torch.cuda.is_available():
|
||||
warnings.warn('GPU test cannot run.'
|
||||
warnings.warn('test_multi_gpu_model_ddp cannot run.'
|
||||
' Rerun on a GPU node to run this test')
|
||||
return False
|
||||
if not torch.cuda.device_count() > 1:
|
||||
warnings.warn('GPU test cannot run.'
|
||||
warnings.warn('test_multi_gpu_model_ddp cannot run.'
|
||||
' Rerun on a node with 2+ GPUs to run this test')
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue