removed dummy d

This commit is contained in:
William Falcon 2019-07-24 11:09:50 -04:00
parent 5606fd86df
commit 480dcb0213
1 changed files with 34 additions and 23 deletions

View File

@ -3,6 +3,7 @@ from pytorch_lightning import Trainer
from pytorch_lightning.examples.new_project_templates.lightning_module_template import LightningTemplateModel
from argparse import Namespace
from test_tube import Experiment
from pytorch_lightning.callbacks import ModelCheckpoint
import numpy as np
import warnings
import torch
@ -27,28 +28,48 @@ def get_model():
return model
def get_exp():
def get_exp(debug=True):
# set up exp object without actually saving logs
root_dir = os.path.dirname(os.path.realpath(__file__))
exp = Experiment(debug=True, save_dir=root_dir, name='tests_tt_dir')
exp = Experiment(debug=debug, save_dir=root_dir, name='tests_tt_dir')
return exp
def clear_tt_dir():
def init_save_dir():
root_dir = os.path.dirname(os.path.realpath(__file__))
tt_dir = os.path.join(root_dir, 'tests_tt_dir')
if os.path.exists(tt_dir):
shutil.rmtree(tt_dir)
save_dir = os.path.join(root_dir, 'save_dir')
if os.path.exists(save_dir):
shutil.rmtree(save_dir)
os.makedirs(save_dir, exist_ok=True)
return save_dir
def clear_save_dir():
root_dir = os.path.dirname(os.path.realpath(__file__))
save_dir = os.path.join(root_dir, 'save_dir')
if os.path.exists(save_dir):
shutil.rmtree(save_dir)
def main():
clear_tt_dir()
save_dir = init_save_dir()
model = get_model()
# exp file to get meta
exp = get_exp(False)
exp.save()
# exp file to get weights
checkpoint = ModelCheckpoint(save_dir)
trainer = Trainer(
checkpoint_callback=checkpoint,
progress_bar=True,
experiment=get_exp(),
experiment=exp,
max_nb_epochs=1,
train_percent_check=0.1,
val_percent_check=0.1,
@ -62,22 +83,12 @@ def main():
# correct result and ok accuracy
assert result == 1, 'amp + ddp model failed to complete'
# test prediction
data = model.val_dataloader
for batch in data:
break
# load trained model
pdb.set_trace()
tags_path = exp.get_data_path(exp.name, exp.version)
LightningTemplateModel.load_from_metrics(weights_path=save_dir, tags_csv=)
x, y = batch
x = x.view(x.size(0), -1)
out = model(x)
labels_hat = torch.argmax(out, dim=1)
val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0)
val_acc = torch.tensor(val_acc)
print(val_acc)
clear_tt_dir()
clear_save_dir()
if __name__ == '__main__':