Addressed code review points

This commit is contained in:
SeanNaren 2020-11-26 16:44:45 +00:00
parent ff34a8fed9
commit 47c121ef1a
7 changed files with 270 additions and 269 deletions

View File

@ -0,0 +1,255 @@
import os
import platform
import time
from unittest import mock
import pytest
import torch
from torch.utils.data.distributed import DistributedSampler
from pytorch_lightning import Trainer, seed_everything
from pytorch_lightning.plugins.sharded_plugin import DDPShardedPlugin, FAIRSCALE_AVAILABLE
from pytorch_lightning.utilities import NATIVE_AMP_AVALAIBLE
from tests.base.boring_model import BoringModel, RandomDataset
@pytest.mark.skipif(platform.system() == "Windows",
reason="Distributed training is not supported on Windows")
@pytest.mark.skipif(not FAIRSCALE_AVAILABLE, reason="Fairscale is not available")
def test_ddp_sharded_plugin_correctness_one_device():
# Allow slightly slower speed due to one CPU doing additional sequential memory saving calls
run_sharded_correctness(accelerator='ddp_cpu', max_percent_speed_diff=0.5)
@pytest.mark.skipif(not torch.cuda.is_available(), reason="requires GPU machine")
@pytest.mark.skipif(platform.system() == "Windows",
reason="Distributed training is not supported on Windows")
@pytest.mark.skipif(not FAIRSCALE_AVAILABLE, reason="Fairscale is not available")
def test_ddp_sharded_plugin_correctness_one_gpu():
run_sharded_correctness(gpus=1, accelerator='ddp_spawn')
@pytest.mark.skipif(not NATIVE_AMP_AVALAIBLE, reason="Requires native AMP")
@pytest.mark.skipif(not torch.cuda.is_available(), reason="requires GPU machine")
@pytest.mark.skipif(platform.system() == "Windows",
reason="Distributed training is not supported on Windows")
@pytest.mark.skipif(not FAIRSCALE_AVAILABLE, reason="Fairscale is not available")
def test_ddp_sharded_plugin_correctness_amp_one_gpu():
run_sharded_correctness(gpus=1, precision=16, accelerator='ddp_spawn')
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
@pytest.mark.skipif(platform.system() == "Windows",
reason="Distributed training is not supported on Windows")
@pytest.mark.skipif(not FAIRSCALE_AVAILABLE,
reason="Fairscale is not available")
def test_ddp_sharded_plugin_correctness_multi_gpu():
run_sharded_correctness(gpus=2, accelerator='ddp_spawn')
@pytest.mark.skipif(not NATIVE_AMP_AVALAIBLE, reason="Requires native AMP")
@pytest.mark.skipif(platform.system() == "Windows",
reason="Distributed training is not supported on Windows")
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
@pytest.mark.skipif(not FAIRSCALE_AVAILABLE, reason="Fairscale is not available")
def test_ddp_sharded_plugin_correctness_amp_multi_gpu():
run_sharded_correctness(gpus=2, precision=16, accelerator='ddp_spawn')
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
@pytest.mark.skipif(platform.system() == "Windows",
reason="Distributed training is not supported on Windows")
@pytest.mark.skipif(not FAIRSCALE_AVAILABLE,
reason="Fairscale is not available")
def test_ddp_sharded_plugin_correctness_multi_gpu_multi_optim():
"""
Ensures same results using multiple optimizers across multiple GPUs
"""
run_sharded_correctness(
gpus=2,
accelerator='ddp_spawn',
model_cls=SeedTrainLoaderMultipleOptimizersModel,
max_percent_speed_diff=0.3 # Increase speed diff since only 2 GPUs sharding 2 optimizers
)
@pytest.mark.skip(reason="Currently DDP manual optimization is broken due to no reduce within training step.")
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
@pytest.mark.skipif(platform.system() == "Windows",
reason="Distributed training is not supported on Windows")
@pytest.mark.skipif(not FAIRSCALE_AVAILABLE, reason="Fairscale is not available")
@mock.patch.dict(os.environ, {"PL_DEV_DEBUG": "1"})
def test_ddp_sharded_plugin_correctness_multi_gpu_multi_optim_manual(tmpdir):
"""
Ensures using multiple optimizers across multiple GPUs with manual optimization
"""
run_sharded_correctness(
gpus=2,
accelerator='ddp_spawn',
model_cls=SeedTrainLoaderManualModel,
)
class SeedTrainLoaderModel(BoringModel):
"""
Overrides training loader to ensure we enforce the same seed for all DDP processes.
"""
def train_dataloader(self):
seed_everything(42)
return torch.utils.data.DataLoader(RandomDataset(32, 64))
class SeedTrainLoaderManualModel(SeedTrainLoaderModel):
def training_step(self, batch, batch_idx, optimizer_idx):
# manual
(opt_a, opt_b) = self.optimizers()
loss_1 = self.step(batch)
self.manual_backward(loss_1, opt_a)
self.manual_optimizer_step(opt_a)
# fake discriminator
loss_2 = self.step(batch[0])
# ensure we forward the correct params to the optimizer
# without retain_graph we can't do multiple backward passes
self.manual_backward(loss_2, opt_b, retain_graph=True)
self.manual_backward(loss_2, opt_a, retain_graph=True)
self.manual_optimizer_step(opt_b)
assert self.layer.weight.grad is None or torch.all(self.layer.weight.grad == 0)
def training_epoch_end(self, outputs) -> None:
# outputs should be an array with an entry per optimizer
assert len(outputs) == 2
def configure_optimizers(self):
optimizer = torch.optim.SGD(self.layer.parameters(), lr=0.1)
optimizer_2 = torch.optim.SGD(self.layer.parameters(), lr=0.1)
return optimizer, optimizer_2
@property
def automatic_optimization(self) -> bool:
return False
class SeedTrainLoaderMultipleOptimizersModel(SeedTrainLoaderModel):
def training_step(self, batch, batch_idx, optimizer_idx):
output = self.layer(batch)
loss = self.loss(batch, output)
return {"loss": loss}
def training_epoch_end(self, outputs) -> None:
# outputs should be an array with an entry per optimizer
assert len(outputs) == 2
def configure_optimizers(self):
optimizer = torch.optim.SGD(self.layer.parameters(), lr=0.1)
optimizer_2 = torch.optim.SGD(self.layer.parameters(), lr=0.1)
return optimizer, optimizer_2
def record_ddp_fit_model_stats(trainer, model, gpus):
"""
Helper to calculate wall clock time for fit + max allocated memory.
Args:
trainer: The trainer object.
model: The LightningModule.
gpus: Number of GPUs in test.
Returns:
Max Memory if using GPUs, and total wall clock time.
"""
max_memory = None
time_start = time.perf_counter()
if gpus > 0:
torch.cuda.reset_peak_memory_stats()
torch.cuda.synchronize()
trainer.fit(model)
if gpus > 0:
torch.cuda.synchronize()
max_memory = torch.cuda.max_memory_allocated() / 2 ** 20
total_time = time.perf_counter() - time_start
return max_memory, total_time
def run_sharded_correctness(
accelerator='ddp_spawn',
gpus=0,
precision=32,
max_percent_speed_diff=0.25,
model_cls=SeedTrainLoaderModel):
"""
Ensures that the trained model is identical to the standard DDP implementation.
Also checks for speed/memory regressions, we should expect always less memory but performance to fluctuate.
Args:
accelerator: Accelerator type for test.
gpus: Number of GPUS to enable.
precision: Whether to use AMP or normal FP32 training.
max_percent_speed_diff: The maximum speed difference compared to normal DDP training.
This is more a safety net for variability in CI which can vary in speed, not for benchmarking.
model_cls: Model class to use for test.
"""
# Train normal DDP
seed_everything(42)
ddp_model = model_cls()
trainer = Trainer(
fast_dev_run=True,
max_epochs=1,
gpus=gpus,
precision=precision,
accelerator=accelerator,
)
max_ddp_memory, ddp_time = record_ddp_fit_model_stats(
trainer=trainer,
model=ddp_model,
gpus=gpus
)
# Reset and train sharded DDP
seed_everything(42)
sharded_model = model_cls()
trainer = Trainer(
fast_dev_run=True,
max_epochs=1,
gpus=gpus,
precision=precision,
accelerator=accelerator,
plugins=[DDPShardedPlugin()],
)
max_sharded_memory, sharded_time = record_ddp_fit_model_stats(
trainer=trainer,
model=sharded_model,
gpus=gpus
)
# Assert model parameters are identical after fit
for ddp_param, shard_param in zip(ddp_model.parameters(), sharded_model.parameters()):
assert torch.equal(ddp_param, shard_param), 'Model parameters are different between DDP and Sharded plugin'
# Assert speed parity by ensuring percentage difference between sharded/ddp is below threshold
percent_diff = (sharded_time - ddp_time) / sharded_time
assert percent_diff <= max_percent_speed_diff, \
f'Sharded plugin was too slow compared to DDP, Sharded Time: {sharded_time}, DDP Time: {ddp_time}'
if gpus > 0:
# Assert CUDA memory parity
assert max_sharded_memory <= max_ddp_memory, \
f'Sharded plugin used too much memory compared to DDP,' \
f'Sharded Mem: {max_sharded_memory}, DDP Mem: {max_ddp_memory}'

View File

@ -11,11 +11,9 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import platform
from pytorch_lightning.utilities import FAIRSCALE_AVAILABLE
from pytorch_lightning.utilities import _module_available
if platform.system() != "Windows" and _module_available('fairscale.nn.data_parallel.sharded_ddp'):
if FAIRSCALE_AVAILABLE:
from fairscale.nn.data_parallel.sharded_ddp import ShardedDataParallel
class LightningShardedDataParallel(ShardedDataParallel):
@ -32,6 +30,5 @@ if platform.system() != "Windows" and _module_available('fairscale.nn.data_paral
outputs = self.module.validation_step(*inputs, **kwargs)
return outputs
FAIRSCALE_SHARDED_AVAILABLE = True
else:
FAIRSCALE_SHARDED_AVAILABLE = False
LightningShardedDataParallel = None

View File

@ -13,16 +13,12 @@
# limitations under the License.
from typing import cast
from pytorch_lightning.utilities import _module_available, NATIVE_AMP_AVALAIBLE
from pytorch_lightning.utilities import NATIVE_AMP_AVALAIBLE, FAIRSCALE_AVAILABLE
if NATIVE_AMP_AVALAIBLE and _module_available('fairscale.optim'):
if NATIVE_AMP_AVALAIBLE and FAIRSCALE_AVAILABLE:
from fairscale.optim import OSS
from fairscale.optim.grad_scaler import ShardedGradScaler
FAIRSCALE_AMP_AVAILABLE = True
else:
FAIRSCALE_AMP_AVAILABLE = False
from pytorch_lightning.plugins.native_amp import NativeAMPPlugin

View File

@ -11,22 +11,17 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import platform
from typing import List, Optional, Union
from pytorch_lightning.core.lightning import LightningModule
from pytorch_lightning.plugins.ddp_plugin import DDPPlugin
from pytorch_lightning.utilities import rank_zero_only, _module_available
from pytorch_lightning.utilities import rank_zero_only, FAIRSCALE_AVAILABLE
from pytorch_lightning.utilities.exceptions import MisconfigurationException
if platform.system() != "Windows" and _module_available('fairscale.optim'): # Distributed not supported on windows
if FAIRSCALE_AVAILABLE:
from fairscale.optim import OSS
from pytorch_lightning.overrides.fairscale import LightningShardedDataParallel
FAIRSCALE_AVAILABLE = True
else:
FAIRSCALE_AVAILABLE = False
class DDPShardedPlugin(DDPPlugin):

View File

@ -16,9 +16,10 @@ from typing import Optional
from pytorch_lightning import _logger as log
from pytorch_lightning.plugins.apex import ApexPlugin
from pytorch_lightning.plugins.native_amp import NativeAMPPlugin
from pytorch_lightning.plugins.sharded_native_amp_plugin import ShardedNativeAMPPlugin, FAIRSCALE_AMP_AVAILABLE
from pytorch_lightning.plugins.sharded_native_amp_plugin import ShardedNativeAMPPlugin
from pytorch_lightning.plugins.sharded_plugin import DDPShardedPlugin
from pytorch_lightning.utilities import APEX_AVAILABLE, NATIVE_AMP_AVALAIBLE, AMPType, rank_zero_warn
from pytorch_lightning.utilities import APEX_AVAILABLE, NATIVE_AMP_AVALAIBLE, AMPType, rank_zero_warn, \
FAIRSCALE_AVAILABLE
from pytorch_lightning.utilities.exceptions import MisconfigurationException
@ -60,7 +61,7 @@ class PrecisionConnector:
else:
self.trainer.amp_backend = AMPType.NATIVE
if plugins and self._sharded_in_plugins(plugins):
if not FAIRSCALE_AMP_AVAILABLE:
if not FAIRSCALE_AVAILABLE:
raise MisconfigurationException('Sharded DDP Plugin requires Fairscale to be installed.')
log.info('Using Sharded 16bit plugin.')
self.backend = ShardedNativeAMPPlugin(self.trainer)

View File

@ -13,6 +13,7 @@
# limitations under the License.
"""General utilities"""
import importlib
import platform
from enum import Enum
import numpy
@ -43,6 +44,7 @@ def _module_available(module_path: str) -> bool:
APEX_AVAILABLE = _module_available("apex.amp")
NATIVE_AMP_AVALAIBLE = hasattr(torch.cuda, "amp") and hasattr(torch.cuda.amp, "autocast")
FAIRSCALE_AVAILABLE = platform.system() != 'Windows' and _module_available('fairscale.nn.data_parallel')
FLOAT16_EPSILON = numpy.finfo(numpy.float16).eps
FLOAT32_EPSILON = numpy.finfo(numpy.float32).eps

View File

@ -1,18 +1,16 @@
import os
import platform
import time
from unittest import mock
import pytest
import torch
from torch.utils.data.distributed import DistributedSampler
from pytorch_lightning import Trainer, seed_everything
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import Callback
from pytorch_lightning.plugins.sharded_native_amp_plugin import ShardedNativeAMPPlugin
from pytorch_lightning.plugins.sharded_plugin import DDPShardedPlugin, FAIRSCALE_AVAILABLE
from pytorch_lightning.utilities import NATIVE_AMP_AVALAIBLE
from tests.base.boring_model import BoringModel, RandomDataset
from tests.base.boring_model import BoringModel
@mock.patch.dict(
@ -280,246 +278,3 @@ def test_ddp_sharded_plugin_resume_from_checkpoint_gpu_to_cpu(tmpdir):
trainer.fit(model)
return 1
@pytest.mark.skipif(platform.system() == "Windows",
reason="Distributed training is not supported on Windows")
@pytest.mark.skipif(not FAIRSCALE_AVAILABLE, reason="Fairscale is not available")
def test_ddp_sharded_plugin_correctness_one_device():
# Allow slightly slower speed due to one CPU doing additional sequential memory saving calls
run_sharded_correctness(accelerator='ddp_cpu', max_percent_speed_diff=0.5)
@pytest.mark.skipif(not torch.cuda.is_available(), reason="requires GPU machine")
@pytest.mark.skipif(platform.system() == "Windows",
reason="Distributed training is not supported on Windows")
@pytest.mark.skipif(not FAIRSCALE_AVAILABLE, reason="Fairscale is not available")
def test_ddp_sharded_plugin_correctness_one_gpu():
run_sharded_correctness(gpus=1, accelerator='ddp_spawn')
@pytest.mark.skipif(not NATIVE_AMP_AVALAIBLE, reason="Requires native AMP")
@pytest.mark.skipif(not torch.cuda.is_available(), reason="requires GPU machine")
@pytest.mark.skipif(platform.system() == "Windows",
reason="Distributed training is not supported on Windows")
@pytest.mark.skipif(not FAIRSCALE_AVAILABLE, reason="Fairscale is not available")
def test_ddp_sharded_plugin_correctness_amp_one_gpu():
run_sharded_correctness(gpus=1, precision=16, accelerator='ddp_spawn')
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
@pytest.mark.skipif(platform.system() == "Windows",
reason="Distributed training is not supported on Windows")
@pytest.mark.skipif(not FAIRSCALE_AVAILABLE,
reason="Fairscale is not available")
def test_ddp_sharded_plugin_correctness_multi_gpu():
run_sharded_correctness(gpus=2, accelerator='ddp_spawn')
@pytest.mark.skipif(not NATIVE_AMP_AVALAIBLE, reason="Requires native AMP")
@pytest.mark.skipif(platform.system() == "Windows",
reason="Distributed training is not supported on Windows")
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
@pytest.mark.skipif(not FAIRSCALE_AVAILABLE, reason="Fairscale is not available")
def test_ddp_sharded_plugin_correctness_amp_multi_gpu():
run_sharded_correctness(gpus=2, precision=16, accelerator='ddp_spawn')
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
@pytest.mark.skipif(platform.system() == "Windows",
reason="Distributed training is not supported on Windows")
@pytest.mark.skipif(not FAIRSCALE_AVAILABLE,
reason="Fairscale is not available")
def test_ddp_sharded_plugin_correctness_multi_gpu_multi_optim():
"""
Ensures same results using multiple optimizers across multiple GPUs
"""
run_sharded_correctness(
gpus=2,
accelerator='ddp_spawn',
model_cls=TestMultipleOptimizersModel,
max_percent_speed_diff=0.3 # Increase speed diff since only 2 GPUs sharding 2 optimizers
)
@pytest.mark.skip(reason="Currently DDP manual optimization is broken due to no reduce within training step.")
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
@pytest.mark.skipif(platform.system() == "Windows",
reason="Distributed training is not supported on Windows")
@pytest.mark.skipif(not FAIRSCALE_AVAILABLE,
reason="Fairscale is not available")
@mock.patch.dict(os.environ, {"PL_DEV_DEBUG": "1"})
def test_ddp_sharded_plugin_correctness_multi_gpu_multi_optim_manual(tmpdir):
"""
Ensures using multiple optimizers across multiple GPUs with manual optimization
"""
run_sharded_correctness(
gpus=2,
accelerator='ddp_spawn',
model_cls=TestManualModel,
)
class TestModel(BoringModel):
"""
Overrides training loader to ensure we enforce the same seed for all DDP processes.
"""
def train_dataloader(self):
seed_everything(42)
return torch.utils.data.DataLoader(RandomDataset(32, 64))
class TestManualModel(TestModel):
def training_step(self, batch, batch_idx, optimizer_idx):
# manual
(opt_a, opt_b) = self.optimizers()
loss_1 = self.step(batch)
self.manual_backward(loss_1, opt_a)
self.manual_optimizer_step(opt_a)
# fake discriminator
loss_2 = self.step(batch[0])
# ensure we forward the correct params to the optimizer
# without retain_graph we can't do multiple backward passes
self.manual_backward(loss_2, opt_b, retain_graph=True)
self.manual_backward(loss_2, opt_a, retain_graph=True)
self.manual_optimizer_step(opt_b)
assert self.layer.weight.grad is None or torch.all(self.layer.weight.grad == 0)
def training_epoch_end(self, outputs) -> None:
# outputs should be an array with an entry per optimizer
assert len(outputs) == 2
def configure_optimizers(self):
optimizer = torch.optim.SGD(self.layer.parameters(), lr=0.1)
optimizer_2 = torch.optim.SGD(self.layer.parameters(), lr=0.1)
return optimizer, optimizer_2
@property
def automatic_optimization(self) -> bool:
return False
class TestMultipleOptimizersModel(TestModel):
def training_step(self, batch, batch_idx, optimizer_idx):
output = self.layer(batch)
loss = self.loss(batch, output)
return {"loss": loss}
def training_epoch_end(self, outputs) -> None:
# outputs should be an array with an entry per optimizer
assert len(outputs) == 2
def configure_optimizers(self):
optimizer = torch.optim.SGD(self.layer.parameters(), lr=0.1)
optimizer_2 = torch.optim.SGD(self.layer.parameters(), lr=0.1)
return optimizer, optimizer_2
def record_ddp_fit_model_stats(trainer, model, gpus):
"""
Helper to calculate wall clock time for fit + max allocated memory.
Args:
trainer: The trainer object.
model: The LightningModule.
gpus: Number of GPUs in test.
Returns:
Max Memory if using GPUs, and total wall clock time.
"""
max_memory = None
time_start = time.perf_counter()
if gpus > 0:
torch.cuda.reset_peak_memory_stats()
torch.cuda.synchronize()
trainer.fit(model)
if gpus > 0:
torch.cuda.synchronize()
max_memory = torch.cuda.max_memory_allocated() / 2 ** 20
total_time = time.perf_counter() - time_start
return max_memory, total_time
def run_sharded_correctness(
accelerator='ddp_spawn',
gpus=0,
precision=32,
max_percent_speed_diff=0.25,
model_cls=TestModel):
"""
Ensures that the trained model is identical to the standard DDP implementation.
Also checks for speed/memory regressions, we should expect always less memory but performance to fluctuate.
Args:
accelerator: Accelerator type for test.
gpus: Number of GPUS to enable.
precision: Whether to use AMP or normal FP32 training.
max_percent_speed_diff: The maximum speed difference compared to normal DDP training.
This is more a safety net for variability in CI which can vary in speed, not for benchmarking.
model_cls: Model class to use for test.
"""
# Train normal DDP
seed_everything(42)
ddp_model = model_cls()
trainer = Trainer(
fast_dev_run=True,
max_epochs=1,
gpus=gpus,
precision=precision,
accelerator=accelerator,
)
max_ddp_memory, ddp_time = record_ddp_fit_model_stats(
trainer=trainer,
model=ddp_model,
gpus=gpus
)
# Reset and train sharded DDP
seed_everything(42)
sharded_model = model_cls()
trainer = Trainer(
fast_dev_run=True,
max_epochs=1,
gpus=gpus,
precision=precision,
accelerator=accelerator,
plugins=[DDPShardedPlugin()],
)
max_sharded_memory, sharded_time = record_ddp_fit_model_stats(
trainer=trainer,
model=sharded_model,
gpus=gpus
)
# Assert model parameters are identical after fit
for ddp_param, shard_param in zip(ddp_model.parameters(), sharded_model.parameters()):
assert torch.equal(ddp_param, shard_param), 'Model parameters are different between DDP and Sharded plugin'
# Assert speed parity by ensuring percentage difference between sharded/ddp is below threshold
percent_diff = (sharded_time - ddp_time) / sharded_time
assert percent_diff <= max_percent_speed_diff, \
f'Sharded plugin was too slow compared to DDP, Sharded Time: {sharded_time}, DDP Time: {ddp_time}'
if gpus > 0:
# Assert CUDA memory parity
assert max_sharded_memory <= max_ddp_memory, \
f'Sharded plugin used too much memory compared to DDP,' \
f'Sharded Mem: {max_sharded_memory}, DDP Mem: {max_ddp_memory}'