ref: group prepare data hook (6) (#3212)

* group prepare data hook

* group prepare data hook

* group prepare data hook

* group prepare data hook

* group prepare data hook

* group prepare data hook

* group prepare data hook
This commit is contained in:
William Falcon 2020-08-26 22:20:00 -04:00 committed by GitHub
parent be0438bb47
commit 464a0e7bb1
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 20 additions and 24 deletions

View File

@ -982,7 +982,7 @@ class Trainer(
parsing.clean_namespace(model.hparams)
# links data to the trainer
self.attach_data(model, train_dataloader, val_dataloaders)
self.attach_data(model, train_dataloader, val_dataloaders, datamodule)
# check that model is configured correctly
self.config_validator.verify_loop_configurations(model)
@ -990,13 +990,8 @@ class Trainer(
# hook
self.call_hook('on_fit_start', model)
# on multi-gpu jobs we only want to manipulate (download, etc) on node_rank=0, local_rank=0
# or in the case where each node needs to do its own manipulation in which case just local_rank=0
if self.can_prepare_data():
if self.datamodule is not None:
self.datamodule.prepare_data()
model.prepare_data()
self._is_data_prepared = True
# hook
self.prepare_data(model)
# Run auto batch size scaling
if self.auto_scale_batch_size:
@ -1013,18 +1008,17 @@ class Trainer(
# set testing if set in environ
self.testing = os.environ.get('PL_TESTING_MODE', self.testing)
# choose accelerator
# -------------------------
# TRAIN
# -------------------------
self.accelerator_backend = self.select_accelerator()
# setup accelerator
self.accelerator_backend.setup(model)
# train!
results = self.accelerator_backend.train()
# teardown accelerator
self.accelerator_backend.teardown()
# -------------------------
# POST-Training
# -------------------------
# hook
self.call_hook('on_fit_end')
@ -1037,7 +1031,16 @@ class Trainer(
# used for testing or when we need to know that training succeeded
return results or 1
def attach_data(self, model, train_dataloader, val_dataloaders):
def prepare_data(self, model):
# on multi-gpu jobs we only want to manipulate (download, etc) on node_rank=0, local_rank=0
# or in the case where each node needs to do its own manipulation in which case just local_rank=0
if self.can_prepare_data():
if self.datamodule is not None:
self.datamodule.prepare_data()
model.prepare_data()
self._is_data_prepared = True
def attach_data(self, model, train_dataloader, val_dataloaders, datamodule):
# if a datamodule comes in as the second arg, then fix it for the user
if isinstance(train_dataloader, LightningDataModule):
datamodule = train_dataloader
@ -1059,10 +1062,7 @@ class Trainer(
use_ddp_spawn = self.use_ddp and self.distributed_backend in ['ddp_cpu', 'ddp_spawn']
# -------------------
# route training mode
# -------------------
# DDP2 (cluster only)
# choose the appropriate accelerator backend
if self.use_ddp2:
accelerator_backend = DDP2Backend(self)
@ -1072,15 +1072,12 @@ class Trainer(
elif use_torchelastic_ddp:
accelerator_backend = DDPBackend(self, mode='torchelastic_ddp')
# regular ddp using .spawn
elif use_ddp_spawn:
accelerator_backend = DDPSpawnBackend(self, nprocs=self.num_processes)
# ddp
elif self.distributed_backend == 'ddp':
accelerator_backend = DDPBackend(self, mode='ddp')
# dp
elif self.use_dp:
accelerator_backend = DataParallelBackend(self)
@ -1098,7 +1095,6 @@ class Trainer(
return accelerator_backend
def can_prepare_data(self):
should_call_dm_prepare_data = True
if self.datamodule is not None and self.is_overridden('prepare_data', self.datamodule):