Remove the unused `utilities.finite_checks` (#16682)
This commit is contained in:
parent
8386c704b4
commit
457cd76d1a
|
@ -254,7 +254,6 @@ utilities
|
|||
data
|
||||
deepspeed
|
||||
distributed
|
||||
finite_checks
|
||||
memory
|
||||
model_summary
|
||||
parsing
|
||||
|
|
|
@ -184,6 +184,9 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).
|
|||
|
||||
- Removed `Trainer.model` setter ([#16462](https://github.com/Lightning-AI/lightning/pull/16462))
|
||||
|
||||
- Removed the unused `lightning.pytorch.utilities.finite_checks.print_nan_gradients` function ([#16682](https://github.com/Lightning-AI/lightning/pull/16682))
|
||||
- Removed the unused `lightning.pytorch.utilities.finite_checks.detect_nan_parameters` function ([#16682](https://github.com/Lightning-AI/lightning/pull/16682))
|
||||
|
||||
- Tuner removal
|
||||
* Removed the deprecated `trainer.tuning` property ([#16379](https://github.com/Lightning-AI/lightning/pull/16379))
|
||||
* Removed the deprecated `TrainerFn.TUNING` and `RunningStage.TUNING` enums ([#16379](https://github.com/Lightning-AI/lightning/pull/16379))
|
||||
|
|
|
@ -1,44 +0,0 @@
|
|||
# Copyright The Lightning AI team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Helper functions to detect NaN/Inf values."""
|
||||
|
||||
import logging
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def print_nan_gradients(model: nn.Module) -> None:
|
||||
"""Iterates over model parameters and prints out parameter + gradient information if NaN."""
|
||||
for param in model.parameters():
|
||||
if (param.grad is not None) and torch.isnan(param.grad.float()).any():
|
||||
log.info(f"{param}, {param.grad}")
|
||||
|
||||
|
||||
def detect_nan_parameters(model: nn.Module) -> None:
|
||||
"""Iterates over model parameters and prints gradients if any parameter is not finite.
|
||||
|
||||
Raises:
|
||||
ValueError:
|
||||
If ``NaN`` or ``inf`` values are found
|
||||
"""
|
||||
for name, param in model.named_parameters():
|
||||
if not torch.isfinite(param).all():
|
||||
print_nan_gradients(model)
|
||||
raise ValueError(
|
||||
f"Detected nan and/or inf values in `{name}`."
|
||||
" Check your forward pass for numerically unstable operations."
|
||||
)
|
|
@ -1,20 +0,0 @@
|
|||
import math
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from lightning.pytorch.utilities.finite_checks import detect_nan_parameters
|
||||
|
||||
|
||||
@pytest.mark.parametrize("value", (math.nan, math.inf, -math.inf))
|
||||
def test_detect_nan_parameters(value):
|
||||
model = nn.Linear(2, 3)
|
||||
|
||||
detect_nan_parameters(model)
|
||||
|
||||
nn.init.constant_(model.bias, value)
|
||||
assert not torch.isfinite(model.bias).all()
|
||||
|
||||
with pytest.raises(ValueError, match=r".*Detected nan and/or inf values in `bias`.*"):
|
||||
detect_nan_parameters(model)
|
Loading…
Reference in New Issue