diff --git a/CHANGELOG.md b/CHANGELOG.md index 6d8c5108d6..86edcaf66e 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -24,6 +24,7 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/). - Remove explicit flush from tensorboard logger ([#2126](https://github.com/PyTorchLightning/pytorch-lightning/pull/2126)) - Added metric Base classes ([#1326](https://github.com/PyTorchLightning/pytorch-lightning/pull/1326), [#1877](https://github.com/PyTorchLightning/pytorch-lightning/pull/1877)) - Added Sklearn metrics classes ([#1327](https://github.com/PyTorchLightning/pytorch-lightning/pull/1327)) +- Added Native torch metrics ([#1488](https://github.com/PyTorchLightning/pytorch-lightning/pull/1488)) - Added type hints in `Trainer.fit()` and `Trainer.test()` to reflect that also a list of dataloaders can be passed in ([#1723](https://github.com/PyTorchLightning/pytorch-lightning/pull/1723)) - Allow dataloaders without sampler field present ([#1907](https://github.com/PyTorchLightning/pytorch-lightning/pull/1907)) - Added option `save_last` to save the model at the end of every epoch in `ModelCheckpoint` [(#1908)](https://github.com/PyTorchLightning/pytorch-lightning/pull/1908) diff --git a/pytorch_lightning/metrics/__init__.py b/pytorch_lightning/metrics/__init__.py index 83446d1170..64ca41729d 100644 --- a/pytorch_lightning/metrics/__init__.py +++ b/pytorch_lightning/metrics/__init__.py @@ -23,8 +23,8 @@ inputs to and outputs from numpy as well as automated ddp syncing. """ +from pytorch_lightning.metrics.converters import numpy_metric, tensor_metric from pytorch_lightning.metrics.metric import Metric, TensorMetric, NumpyMetric from pytorch_lightning.metrics.sklearn import ( SklearnMetric, Accuracy, AveragePrecision, AUC, ConfusionMatrix, F1, FBeta, Precision, Recall, PrecisionRecallCurve, ROC, AUROC) -from pytorch_lightning.metrics.converters import numpy_metric, tensor_metric diff --git a/pytorch_lightning/metrics/classification.py b/pytorch_lightning/metrics/classification.py new file mode 100644 index 0000000000..3e02a8735b --- /dev/null +++ b/pytorch_lightning/metrics/classification.py @@ -0,0 +1,652 @@ +from typing import Any, Optional, Sequence, Tuple + +import torch + +from pytorch_lightning.metrics.functional.classification import ( + accuracy, + confusion_matrix, + precision_recall_curve, + precision, + recall, + average_precision, + auroc, + fbeta_score, + f1_score, + roc, + multiclass_roc, + multiclass_precision_recall_curve, + dice_score +) +from pytorch_lightning.metrics.metric import TensorMetric, TensorCollectionMetric + +__all__ = [ + 'Accuracy', + 'ConfusionMatrix', + 'PrecisionRecall', + 'Precision', + 'Recall', + 'AveragePrecision', + 'AUROC', + 'FBeta', + 'F1', + 'ROC', + 'MulticlassROC', + 'MulticlassPrecisionRecall', + 'DiceCoefficient' +] + + +class Accuracy(TensorMetric): + """ + Computes the accuracy classification score + + """ + + def __init__( + self, + num_classes: Optional[int] = None, + reduction: str = 'elementwise_mean', + reduce_group: Any = None, + reduce_op: Any = None, + ): + """ + Args: + num_classes: number of classes + reduction: a method for reducing accuracies over labels (default: takes the mean) + Available reduction methods: + - elementwise_mean: takes the mean + - none: pass array + - sum: add elements + reduce_group: the process group to reduce metric results from DDP + reduce_op: the operation to perform for ddp reduction + + """ + super().__init__(name='accuracy', + reduce_group=reduce_group, + reduce_op=reduce_op) + self.num_classes = num_classes + self.reduction = reduction + + def forward(self, pred: torch.Tensor, target: torch.Tensor) -> torch.Tensor: + """ + Actual metric computation + + Args: + pred: predicted labels + target: ground truth labels + + Return: + A Tensor with the classification score. + """ + return accuracy(pred=pred, target=target, + num_classes=self.num_classes, reduction=self.reduction) + + +class ConfusionMatrix(TensorMetric): + """ + Computes the confusion matrix C where each entry C_{i,j} is the number of observations + in group i that were predicted in group j. + + """ + + def __init__( + self, + normalize: bool = False, + reduce_group: Any = None, + reduce_op: Any = None, + ): + """ + Args: + normalize: whether to compute a normalized confusion matrix + reduce_group: the process group to reduce metric results from DDP + reduce_op: the operation to perform for ddp reduction + """ + super().__init__(name='confusion_matrix', + reduce_group=reduce_group, + reduce_op=reduce_op) + self.normalize = normalize + + def forward(self, pred: torch.Tensor, target: torch.Tensor) -> torch.Tensor: + """ + Actual metric computation + + Args: + pred: predicted labels + target: ground truth labels + + Return: + A Tensor with the confusion matrix. + """ + return confusion_matrix(pred=pred, target=target, + normalize=self.normalize) + + +class PrecisionRecall(TensorCollectionMetric): + """ + Computes the precision recall curve + """ + + def __init__( + self, + pos_label: int = 1, + reduce_group: Any = None, + reduce_op: Any = None, + ): + """ + Args: + pos_label: positive label indicator + reduce_group: the process group to reduce metric results from DDP + reduce_op: the operation to perform for ddp reduction + + """ + super().__init__(name='precision_recall_curve', + reduce_group=reduce_group, + reduce_op=reduce_op) + + self.pos_label = pos_label + + def forward( + self, + pred: torch.Tensor, + target: torch.Tensor, + sample_weight: Optional[Sequence] = None, + ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: + """ + Actual metric computation + + Args: + pred: predicted labels + target: groundtruth labels + sample_weight: the weights per sample + + Return: + torch.Tensor: precision values + torch.Tensor: recall values + torch.Tensor: threshold values + """ + return precision_recall_curve(pred=pred, target=target, + sample_weight=sample_weight, + pos_label=self.pos_label) + + +class Precision(TensorMetric): + """ + Computes the precision score + """ + + def __init__( + self, + num_classes: Optional[int] = None, + reduction: str = 'elementwise_mean', + reduce_group: Any = None, + reduce_op: Any = None, + ): + """ + Args: + num_classes: number of classes + reduction: a method for reducing accuracies over labels (default: takes the mean) + Available reduction methods: + - elementwise_mean: takes the mean + - none: pass array + - sum: add elements + reduce_group: the process group to reduce metric results from DDP + reduce_op: the operation to perform for ddp reduction + + """ + super().__init__(name='precision', + reduce_group=reduce_group, + reduce_op=reduce_op) + + self.num_classes = num_classes + self.reduction = reduction + + def forward(self, pred: torch.Tensor, target: torch.Tensor) -> torch.Tensor: + """ + Actual metric computation + + Args: + pred: predicted labels + target: ground truth labels + + Return: + A Tensor with the classification score. + """ + return precision(pred=pred, target=target, + num_classes=self.num_classes, + reduction=self.reduction) + + +class Recall(TensorMetric): + """ + Computes the recall score + """ + + def __init__( + self, + num_classes: Optional[int] = None, + reduction: str = 'elementwise_mean', + reduce_group: Any = None, + reduce_op: Any = None, + ): + """ + Args: + num_classes: number of classes + reduction: a method for reducing accuracies over labels (default: takes the mean) + Available reduction methods: + - elementwise_mean: takes the mean + - none: pass array + - sum: add elements + reduce_group: the process group to reduce metric results from DDP + reduce_op: the operation to perform for ddp reduction + + """ + super().__init__(name='recall', + reduce_group=reduce_group, + reduce_op=reduce_op) + + self.num_classes = num_classes + self.reduction = reduction + + def forward(self, pred: torch.Tensor, target: torch.Tensor) -> torch.Tensor: + """ + Actual metric computation + + Args: + pred: predicted labels + target: ground truth labels + + Return: + A Tensor with the classification score. + """ + return recall(pred=pred, + target=target, + num_classes=self.num_classes, + reduction=self.reduction) + + +class AveragePrecision(TensorMetric): + """ + Computes the average precision score + """ + + def __init__( + self, + pos_label: int = 1, + reduce_group: Any = None, + reduce_op: Any = None, + ): + """ + Args: + pos_label: positive label indicator + reduce_group: the process group to reduce metric results from DDP + reduce_op: the operation to perform for ddp reduction + + """ + super().__init__(name='AP', + reduce_group=reduce_group, + reduce_op=reduce_op) + + self.pos_label = pos_label + + def forward( + self, + pred: torch.Tensor, + target: torch.Tensor, + sample_weight: Optional[Sequence] = None + ) -> torch.Tensor: + """ + Actual metric computation + + Args: + pred: predicted labels + target: groundtruth labels + sample_weight: the weights per sample + + Return: + torch.Tensor: classification score + """ + return average_precision(pred=pred, target=target, + sample_weight=sample_weight, + pos_label=self.pos_label) + + +class AUROC(TensorMetric): + """ + Computes the area under curve (AUC) of the receiver operator characteristic (ROC) + """ + + def __init__( + self, + pos_label: int = 1, + reduce_group: Any = None, + reduce_op: Any = None, + ): + """ + Args: + pos_label: positive label indicator + reduce_group: the process group to reduce metric results from DDP + reduce_op: the operation to perform for ddp reduction + + """ + super().__init__(name='auroc', + reduce_group=reduce_group, + reduce_op=reduce_op) + + self.pos_label = pos_label + + def forward( + self, + pred: torch.Tensor, + target: torch.Tensor, + sample_weight: Optional[Sequence] = None + ) -> torch.Tensor: + """ + Actual metric computation + + Args: + pred: predicted labels + target: groundtruth labels + sample_weight: the weights per sample + + Return: + torch.Tensor: classification score + """ + return auroc(pred=pred, target=target, + sample_weight=sample_weight, + pos_label=self.pos_label) + + +class FBeta(TensorMetric): + """Computes the FBeta Score""" + + def __init__( + self, + beta: float, + num_classes: Optional[int] = None, + reduction: str = 'elementwise_mean', + reduce_group: Any = None, + reduce_op: Any = None, + ): + """ + Args: + beta: determines the weight of recall in the combined score. + num_classes: number of classes + reduction: a method for reducing accuracies over labels (default: takes the mean) + Available reduction methods: + - elementwise_mean: takes the mean + - none: pass array + - sum: add elements + reduce_group: the process group to reduce metric results from DDP + reduce_op: the operation to perform for ddp reduction + + """ + super().__init__(name='fbeta', + reduce_group=reduce_group, + reduce_op=reduce_op) + + self.beta = beta + self.num_classes = num_classes + self.reduction = reduction + + def forward(self, pred: torch.Tensor, target: torch.Tensor) -> torch.Tensor: + """ + Actual metric computation + + Args: + pred: predicted labels + target: groundtruth labels + + Return: + torch.Tensor: classification score + """ + return fbeta_score(pred=pred, target=target, + beta=self.beta, num_classes=self.num_classes, + reduction=self.reduction) + + +class F1(TensorMetric): + """Computes the F1 score""" + + def __init__( + self, + num_classes: Optional[int] = None, + reduction: str = 'elementwise_mean', + reduce_group: Any = None, + reduce_op: Any = None, + ): + """ + Args: + num_classes: number of classes + reduction: a method for reducing accuracies over labels (default: takes the mean) + Available reduction methods: + - elementwise_mean: takes the mean + - none: pass array + - sum: add elements + reduce_group: the process group to reduce metric results from DDP + reduce_op: the operation to perform for ddp reduction + + """ + super().__init__(name='f1', + reduce_group=reduce_group, + reduce_op=reduce_op) + + self.num_classes = num_classes + self.reduction = reduction + + def forward(self, pred: torch.Tensor, target: torch.Tensor) -> torch.Tensor: + """ + Actual metric computation + + Args: + pred: predicted labels + target: groundtruth labels + + Return: + torch.Tensor: classification score + """ + return f1_score(pred=pred, target=target, + num_classes=self.num_classes, + reduction=self.reduction) + + +class ROC(TensorCollectionMetric): + """ + Computes the Receiver Operator Characteristic (ROC) + """ + + def __init__( + self, + pos_label: int = 1, + reduce_group: Any = None, + reduce_op: Any = None, + ): + """ + Args: + pos_label: positive label indicator + reduce_group: the process group to reduce metric results from DDP + reduce_op: the operation to perform for ddp reduction + + """ + super().__init__(name='roc', + reduce_group=reduce_group, + reduce_op=reduce_op) + + self.pos_label = pos_label + + def forward( + self, + pred: torch.Tensor, + target: torch.Tensor, + sample_weight: Optional[Sequence] = None + ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: + """ + Actual metric computation + + Args: + pred: predicted labels + target: groundtruth labels + sample_weight: the weights per sample + + Return: + torch.Tensor: false positive rate + torch.Tensor: true positive rate + torch.Tensor: thresholds + """ + return roc(pred=pred, target=target, + sample_weight=sample_weight, + pos_label=self.pos_label) + + +class MulticlassROC(TensorCollectionMetric): + """ + Computes the multiclass ROC + """ + + def __init__( + self, + num_classes: Optional[int] = None, + reduce_group: Any = None, + reduce_op: Any = None, + ): + """ + Args: + num_classes: number of classes + reduction: a method for reducing accuracies over labels (default: takes the mean) + Available reduction methods: + - elementwise_mean: takes the mean + - none: pass array + - sum: add elements + reduce_group: the process group to reduce metric results from DDP + reduce_op: the operation to perform for ddp reduction + + """ + super().__init__(name='multiclass_roc', + reduce_group=reduce_group, + reduce_op=reduce_op) + + self.num_classes = num_classes + + def forward( + self, pred: torch.Tensor, + target: torch.Tensor, + sample_weight: Optional[Sequence] = None, + ) -> Tuple[Tuple[torch.Tensor, torch.Tensor, torch.Tensor]]: + """ + Actual metric computation + + Args: + pred: predicted labels + target: groundtruth labels + sample_weight: Weights for each sample defining the sample's impact on the score + + Return: + tuple: A tuple consisting of one tuple per class, + holding false positive rate, true positive rate and thresholds + """ + return multiclass_roc(pred=pred, + target=target, + sample_weight=sample_weight, + num_classes=self.num_classes) + + +class MulticlassPrecisionRecall(TensorCollectionMetric): + """Computes the multiclass PR Curve""" + + def __init__( + self, + num_classes: Optional[int] = None, + reduce_group: Any = None, + reduce_op: Any = None, + ): + """ + Args: + num_classes: number of classes + reduction: a method for reducing accuracies over labels (default: takes the mean) + Available reduction methods: + - elementwise_mean: takes the mean + - none: pass array + - sum: add elements + reduce_group: the process group to reduce metric results from DDP + reduce_op: the operation to perform for ddp reduction + + """ + super().__init__(name='multiclass_precision_recall_curve', + reduce_group=reduce_group, + reduce_op=reduce_op) + + self.num_classes = num_classes + + def forward( + self, + pred: torch.Tensor, + target: torch.Tensor, + sample_weight: Optional[Sequence] = None, + ) -> Tuple[Tuple[torch.Tensor, torch.Tensor, torch.Tensor]]: + """ + Actual metric computation + + Args: + pred: predicted labels + target: groundtruth labels + sample_weight: Weights for each sample defining the sample's impact on the score + + Return: + tuple: A tuple consisting of one tuple per class, + holding precision, recall and thresholds + """ + return multiclass_precision_recall_curve(pred=pred, + target=target, + sample_weight=sample_weight, + num_classes=self.num_classes) + + +class DiceCoefficient(TensorMetric): + """Computes the dice coefficient""" + + def __init__( + self, + include_background: bool = False, + nan_score: float = 0.0, no_fg_score: float = 0.0, + reduction: str = 'elementwise_mean', + reduce_group: Any = None, + reduce_op: Any = None, + ): + """ + Args: + include_background: whether to also compute dice for the background + nan_score: score to return, if a NaN occurs during computation (denom zero) + no_fg_score: score to return, if no foreground pixel was found in target + reduction: a method for reducing accuracies over labels (default: takes the mean) + Available reduction methods: + - elementwise_mean: takes the mean + - none: pass array + - sum: add elements + reduce_group: the process group to reduce metric results from DDP + reduce_op: the operation to perform for ddp reduction + """ + super().__init__(name='dice', + reduce_group=reduce_group, + reduce_op=reduce_op) + + self.include_background = include_background + self.nan_score = nan_score + self.no_fg_score = no_fg_score + self.reduction = reduction + + def forward(self, pred: torch.Tensor, target: torch.Tensor) -> torch.Tensor: + """ + Actual metric computation + + Args: + pred: predicted labels + target: groundtruth labels + + Return: + torch.Tensor: the calculated dice coefficient + """ + return dice_score(pred=pred, + target=target, + bg=self.include_background, + nan_score=self.nan_score, + no_fg_score=self.no_fg_score, + reduction=self.reduction) diff --git a/pytorch_lightning/metrics/converters.py b/pytorch_lightning/metrics/converters.py index 7681be589f..9803500445 100644 --- a/pytorch_lightning/metrics/converters.py +++ b/pytorch_lightning/metrics/converters.py @@ -4,7 +4,6 @@ conversion to/from :class:`numpy.ndarray` and :class:`torch.Tensor` as well as u sync tensors between different processes in a DDP scenario, when needed. """ -import sys import numbers from typing import Union, Any, Callable, Optional @@ -18,12 +17,13 @@ from pytorch_lightning.utilities.apply_func import apply_to_collection def _apply_to_inputs(func_to_apply: Callable, *dec_args, **dec_kwargs) -> Callable: """ Decorator function to apply a function to all inputs of a function. + Args: func_to_apply: the function to apply to the inputs *dec_args: positional arguments for the function to be applied **dec_kwargs: keyword arguments for the function to be applied - Returns: + Return: the decorated function """ @@ -42,12 +42,13 @@ def _apply_to_inputs(func_to_apply: Callable, *dec_args, **dec_kwargs) -> Callab def _apply_to_outputs(func_to_apply: Callable, *dec_args, **dec_kwargs) -> Callable: """ Decorator function to apply a function to all outputs of a function. + Args: func_to_apply: the function to apply to the outputs *dec_args: positional arguments for the function to be applied **dec_kwargs: keyword arguments for the function to be applied - Returns: + Return: the decorated function """ @@ -69,9 +70,8 @@ def _convert_to_tensor(data: Any) -> Any: Args: data: the data to convert to tensor - Returns: + Return: the converted data - """ if isinstance(data, numbers.Number): return torch.tensor([data]) @@ -86,12 +86,12 @@ def _convert_to_tensor(data: Any) -> Any: def _convert_to_numpy(data: Union[torch.Tensor, np.ndarray, numbers.Number]) -> np.ndarray: """Convert all tensors and numpy arrays to numpy arrays. + Args: data: the tensor or array to convert to numpy - Returns: + Return: the resulting numpy array - """ if isinstance(data, torch.Tensor): return data.cpu().detach().numpy() @@ -103,6 +103,33 @@ def _convert_to_numpy(data: Union[torch.Tensor, np.ndarray, numbers.Number]) -> raise TypeError("The given type ('%s') cannot be converted to a numpy array!" % type(data).__name__) +def _numpy_metric_input_conversion(func_to_decorate: Callable) -> Callable: + """ + Decorator converting all inputs of a function to numpy + + Args: + func_to_decorate: the function whose inputs shall be converted + + Return: + Callable: the decorated function + """ + return _apply_to_inputs( + apply_to_collection, (torch.Tensor, np.ndarray, numbers.Number), _convert_to_numpy)(func_to_decorate) + + +def _tensor_metric_output_conversion(func_to_decorate: Callable) -> Callable: + """ + Decorator converting all outputs of a function to tensors + + Args: + func_to_decorate: the function whose outputs shall be converted + + Return: + Callable: the decorated function + """ + return _apply_to_outputs(_convert_to_tensor)(func_to_decorate) + + def _numpy_metric_conversion(func_to_decorate: Callable) -> Callable: """ Decorator handling the argument conversion for metrics working on numpy. @@ -112,19 +139,45 @@ def _numpy_metric_conversion(func_to_decorate: Callable) -> Callable: Args: func_to_decorate: the function whose inputs and outputs shall be converted - Returns: + Return: the decorated function - """ # applies collection conversion from tensor to numpy to all inputs # we need to include numpy arrays here, since otherwise they will also be treated as sequences - func_convert_inputs = _apply_to_inputs( - apply_to_collection, (torch.Tensor, np.ndarray, numbers.Number), _convert_to_numpy)(func_to_decorate) + func_convert_inputs = _numpy_metric_input_conversion(func_to_decorate) # converts all inputs back to tensors (device doesn't matter here, since this is handled by BaseMetric) - func_convert_in_out = _apply_to_outputs(_convert_to_tensor)(func_convert_inputs) + func_convert_in_out = _tensor_metric_output_conversion(func_convert_inputs) return func_convert_in_out +def _tensor_metric_input_conversion(func_to_decorate: Callable) -> Callable: + """ + Decorator converting all inputs of a function to tensors + + Args: + func_to_decorate: the function whose inputs shall be converted + + Return: + Callable: the decorated function + """ + return _apply_to_inputs( + apply_to_collection, (torch.Tensor, np.ndarray, numbers.Number), _convert_to_tensor)(func_to_decorate) + + +def _tensor_collection_metric_output_conversion(func_to_decorate: Callable) -> Callable: + """ + Decorator converting all numpy arrays and numbers occuring in the outputs of a function to tensors + + Args: + func_to_decorate: the function whose outputs shall be converted + + Return: + Callable: the decorated function + """ + return _apply_to_outputs(apply_to_collection, (torch.Tensor, np.ndarray, numbers.Number), + _convert_to_tensor)(func_to_decorate) + + def _tensor_metric_conversion(func_to_decorate: Callable) -> Callable: """ Decorator Handling the argument conversion for metrics working on tensors. @@ -133,16 +186,33 @@ def _tensor_metric_conversion(func_to_decorate: Callable) -> Callable: Args: func_to_decorate: the function whose inputs and outputs shall be converted - Returns: + Return: the decorated function - """ # converts all inputs to tensor if possible # we need to include tensors here, since otherwise they will also be treated as sequences - func_convert_inputs = _apply_to_inputs( - apply_to_collection, (torch.Tensor, np.ndarray, numbers.Number), _convert_to_tensor)(func_to_decorate) + func_convert_inputs = _tensor_metric_input_conversion(func_to_decorate) # convert all outputs to tensor if possible - return _apply_to_outputs(_convert_to_tensor)(func_convert_inputs) + return _tensor_metric_output_conversion(func_convert_inputs) + + +def _tensor_collection_metric_conversion(func_to_decorate: Callable) -> Callable: + """ + Decorator Handling the argument conversion for metrics working on tensors. + All inputs of the decorated function and all numpy arrays and numbers in + it's outputs will be converted to tensors + + Args: + func_to_decorate: the function whose inputs and outputs shall be converted + + Return: + the decorated function + """ + # converts all inputs to tensor if possible + # we need to include tensors here, since otherwise they will also be treated as sequences + func_convert_inputs = _tensor_metric_input_conversion(func_to_decorate) + # convert all outputs to tensor if possible + return _tensor_collection_metric_output_conversion(func_convert_inputs) def _sync_ddp_if_available(result: Union[torch.Tensor], @@ -157,9 +227,8 @@ def _sync_ddp_if_available(result: Union[torch.Tensor], group: the process group to gather results from. Defaults to all processes (world) reduce_op: the reduction operation. Defaults to sum. - Returns: + Return: reduced value - """ if torch.distributed.is_available() and torch.distributed.is_initialized(): @@ -177,11 +246,32 @@ def _sync_ddp_if_available(result: Union[torch.Tensor], return result +def sync_ddp(group: Optional[Any] = None, + reduce_op: Optional[torch.distributed.ReduceOp] = None) -> Callable: + """ + This decorator syncs a functions outputs across different processes for DDP. + + Args: + group: the process group to gather results from. Defaults to all processes (world) + reduce_op: the reduction operation. Defaults to sum + + Return: + the decorated function + + """ + + def decorator_fn(func_to_decorate): + return _apply_to_outputs(apply_to_collection, torch.Tensor, + _sync_ddp_if_available, group=group, + reduce_op=reduce_op)(func_to_decorate) + + return decorator_fn + + def numpy_metric(group: Optional[Any] = None, reduce_op: Optional[torch.distributed.ReduceOp] = None) -> Callable: """ This decorator shall be used on all function metrics working on numpy arrays. - It handles the argument conversion and DDP reduction for metrics working on numpy. All inputs of the decorated function will be converted to numpy and all outputs will be converted to tensors. @@ -191,15 +281,12 @@ def numpy_metric(group: Optional[Any] = None, group: the process group to gather results from. Defaults to all processes (world) reduce_op: the reduction operation. Defaults to sum - Returns: + Return: the decorated function - """ def decorator_fn(func_to_decorate): - return _apply_to_outputs(apply_to_collection, torch.Tensor, _sync_ddp_if_available, - group=group, - reduce_op=reduce_op)(_numpy_metric_conversion(func_to_decorate)) + return sync_ddp(group=group, reduce_op=reduce_op)(_numpy_metric_conversion(func_to_decorate)) return decorator_fn @@ -208,7 +295,6 @@ def tensor_metric(group: Optional[Any] = None, reduce_op: Optional[torch.distributed.ReduceOp] = None) -> Callable: """ This decorator shall be used on all function metrics working on tensors. - It handles the argument conversion and DDP reduction for metrics working on tensors. All inputs and outputs of the decorated function will be converted to tensors. In DDP Training all output tensors will be reduced according to the given rules. @@ -217,14 +303,34 @@ def tensor_metric(group: Optional[Any] = None, group: the process group to gather results from. Defaults to all processes (world) reduce_op: the reduction operation. Defaults to sum - Returns: + Return: the decorated function - """ def decorator_fn(func_to_decorate): - return _apply_to_outputs(apply_to_collection, torch.Tensor, _sync_ddp_if_available, - group=group, - reduce_op=reduce_op)(_tensor_metric_conversion(func_to_decorate)) + return sync_ddp(group=group, reduce_op=reduce_op)(_tensor_metric_conversion(func_to_decorate)) + + return decorator_fn + + +def tensor_collection_metric(group: Optional[Any] = None, + reduce_op: Optional[torch.distributed.ReduceOp] = None) -> Callable: + """ + This decorator shall be used on all function metrics working on tensors and returning collections + that cannot be converted to tensors. + It handles the argument conversion and DDP reduction for metrics working on tensors. + All inputs and outputs of the decorated function will be converted to tensors. + In DDP Training all output tensors will be reduced according to the given rules. + + Args: + group: the process group to gather results from. Defaults to all processes (world) + reduce_op: the reduction operation. Defaults to sum + + Return: + the decorated function + """ + + def decorator_fn(func_to_decorate): + return sync_ddp(group=group, reduce_op=reduce_op)(_tensor_collection_metric_conversion(func_to_decorate)) return decorator_fn diff --git a/pytorch_lightning/metrics/functional/__init__.py b/pytorch_lightning/metrics/functional/__init__.py new file mode 100644 index 0000000000..e69de29bb2 diff --git a/pytorch_lightning/metrics/functional/classification.py b/pytorch_lightning/metrics/functional/classification.py new file mode 100644 index 0000000000..b1bcad1661 --- /dev/null +++ b/pytorch_lightning/metrics/functional/classification.py @@ -0,0 +1,693 @@ +from collections import Sequence +from functools import wraps +from typing import Optional, Tuple, Callable + +import torch + +from pytorch_lightning.metrics.functional.reduction import reduce + + +def to_onehot( + tensor: torch.Tensor, + n_classes: Optional[int] = None, +) -> torch.Tensor: + """ + Converts a dense label tensor to one-hot format + + Args: + tensor: dense label tensor, with shape [N, d1, d2, ...] + + n_classes: number of classes C + + Output: + A sparse label tensor with shape [N, C, d1, d2, ...] + """ + if n_classes is None: + n_classes = int(tensor.max().detach().item() + 1) + dtype, device, shape = tensor.dtype, tensor.device, tensor.shape + tensor_onehot = torch.zeros(shape[0], n_classes, *shape[1:], + dtype=dtype, device=device) + index = tensor.long().unsqueeze(1).expand_as(tensor_onehot) + return tensor_onehot.scatter_(1, index, 1.0) + + +def to_categorical(tensor: torch.Tensor, argmax_dim: int = 1) -> torch.Tensor: + """ + Converts a tensor of probabilities to a dense label tensor + + Args: + tensor: probabilities to get the categorical label [N, d1, d2, ...] + argmax_dim: dimension to apply (default: 1) + + Return: + A tensor with categorical labels [N, d2, ...] + """ + return torch.argmax(tensor, dim=argmax_dim) + + +def get_num_classes( + pred: torch.Tensor, + target: torch.Tensor, + num_classes: Optional[int], +) -> int: + """ + Returns the number of classes for a given prediction and target tensor. + + Args: + pred: predicted values + target: true labels + num_classes: number of classes if known (default: None) + + Return: + An integer that represents the number of classes. + """ + if num_classes is None: + if pred.ndim > target.ndim: + num_classes = pred.size(1) + else: + num_classes = int(target.max().detach().item() + 1) + return num_classes + + +def stat_scores( + pred: torch.Tensor, + target: torch.Tensor, + class_index: int, argmax_dim: int = 1, +) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: + """ + Calculates the number of true positive, falsepositivee, true negative + and false negative for a specific class + + Args: + pred: prediction tensor + + target: target tensor + + class_index: class to calculate over + + argmax_dim: if pred is a tensor of probabilities, this indicates the + axis the argmax transformation will be applied over + + Return: + Tensors in the following order: True Positive, False Positive, True Negative, False Negative + + """ + if pred.ndim == target.ndim + 1: + pred = to_categorical(pred, argmax_dim=argmax_dim) + + tp = ((pred == class_index) * (target == class_index)).to(torch.long).sum() + fp = ((pred == class_index) * (target != class_index)).to(torch.long).sum() + tn = ((pred != class_index) * (target != class_index)).to(torch.long).sum() + fn = ((pred != class_index) * (target == class_index)).to(torch.long).sum() + + return tp, fp, tn, fn + + +def stat_scores_multiple_classes( + pred: torch.Tensor, + target: torch.Tensor, + num_classes: Optional[int] = None, + argmax_dim: int = 1, +) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: + """ + Calls the stat_scores function iteratively for all classes, thus + calculating the number of true postive, false postive, true negative + and false negative for each class + + Args: + pred: prediction tensor + target: target tensor + class_index: class to calculate over + argmax_dim: if pred is a tensor of probabilities, this indicates the + axis the argmax transformation will be applied over + + Return: + Returns tensors for: tp, fp, tn, fn + + """ + num_classes = get_num_classes(pred=pred, target=target, + num_classes=num_classes) + + if pred.ndim == target.ndim + 1: + pred = to_categorical(pred, argmax_dim=argmax_dim) + + tps = torch.zeros((num_classes,), device=pred.device) + fps = torch.zeros((num_classes,), device=pred.device) + tns = torch.zeros((num_classes,), device=pred.device) + fns = torch.zeros((num_classes,), device=pred.device) + + for c in range(num_classes): + tps[c], fps[c], tns[c], fns[c] = stat_scores(pred=pred, target=target, + class_index=c) + + return tps, fps, tns, fns + + +def accuracy( + pred: torch.Tensor, + target: torch.Tensor, + num_classes: Optional[int] = None, + reduction='elementwise_mean', +) -> torch.Tensor: + """ + Computes the accuracy classification score + + Args: + pred: predicted labels + target: ground truth labels + num_classes: number of classes + reduction: a method for reducing accuracies over labels (default: takes the mean) + Available reduction methods: + + - elementwise_mean: takes the mean + - none: pass array + - sum: add elements + + Return: + A Tensor with the classification score. + """ + tps, fps, tns, fns = stat_scores_multiple_classes(pred=pred, target=target, + num_classes=num_classes) + + if not (target > 0).any() and num_classes is None: + raise RuntimeError("cannot infer num_classes when target is all zero") + + accuracies = (tps + tns) / (tps + tns + fps + fns) + + return reduce(accuracies, reduction=reduction) + + +def confusion_matrix( + pred: torch.Tensor, + target: torch.Tensor, + normalize: bool = False, +) -> torch.Tensor: + """ + Computes the confusion matrix C where each entry C_{i,j} is the number of observations + in group i that were predicted in group j. + + Args: + pred: estimated targets + target: ground truth labels + normalize: normalizes confusion matrix + + Return: + Tensor, confusion matrix C [num_classes, num_classes ] + """ + num_classes = get_num_classes(pred, target, None) + + d = target.size(-1) + batch_vec = torch.arange(target.size(-1)) + # this will account for multilabel + unique_labels = batch_vec * num_classes ** 2 + target.view(-1) * num_classes + pred.view(-1) + + bins = torch.bincount(unique_labels, minlength=d * num_classes ** 2) + cm = bins.reshape(d, num_classes, num_classes).squeeze().float() + + if normalize: + cm = cm / cm.sum(-1) + + return cm + + +def precision_recall( + pred: torch.Tensor, + target: torch.Tensor, + num_classes: Optional[int] = None, + reduction: str = 'elementwise_mean', +) -> Tuple[torch.Tensor, torch.Tensor]: + """ + Computes precision and recall for different thresholds + + Args: + pred: estimated probabilities + target: ground-truth labels + num_classes: number of classes + reduction: method for reducing precision-recall values (default: takes the mean) + Available reduction methods: + + - elementwise_mean: takes the mean + - none: pass array + - sum: add elements + + Return: + Tensor with precision and recall + """ + tps, fps, tns, fns = stat_scores_multiple_classes(pred=pred, + target=target, + num_classes=num_classes) + + tps = tps.to(torch.float) + fps = fps.to(torch.float) + fns = fns.to(torch.float) + + precision = tps / (tps + fps) + recall = tps / (tps + fns) + + precision = reduce(precision, reduction=reduction) + recall = reduce(recall, reduction=reduction) + return precision, recall + + +def precision( + pred: torch.Tensor, + target: torch.Tensor, + num_classes: Optional[int] = None, + reduction: str = 'elementwise_mean', +) -> torch.Tensor: + """ + Computes precision score. + + Args: + pred: estimated probabilities + target: ground-truth labels + num_classes: number of classes + reduction: method for reducing precision values (default: takes the mean) + Available reduction methods: + + - elementwise_mean: takes the mean + - none: pass array + - sum: add elements + + Return: + Tensor with precision. + """ + return precision_recall(pred=pred, target=target, + num_classes=num_classes, reduction=reduction)[0] + + +def recall( + pred: torch.Tensor, + target: torch.Tensor, + num_classes: Optional[int] = None, + reduction: str = 'elementwise_mean', +) -> torch.Tensor: + """ + Computes recall score. + + Args: + pred: estimated probabilities + target: ground-truth labels + num_classes: number of classes + reduction: method for reducing recall values (default: takes the mean) + Available reduction methods: + + - elementwise_mean: takes the mean + - none: pass array + - sum: add elements + + Return: + Tensor with recall. + """ + return precision_recall(pred=pred, target=target, + num_classes=num_classes, reduction=reduction)[1] + + +def fbeta_score( + pred: torch.Tensor, + target: torch.Tensor, + beta: float, + num_classes: Optional[int] = None, + reduction: str = 'elementwise_mean', +) -> torch.Tensor: + """ + Computes the F-beta score which is a weighted harmonic mean of precision and recall. + It ranges between 1 and 0, where 1 is perfect and the worst value is 0. + + Args: + pred: estimated probabilities + target: ground-truth labels + beta: weights recall when combining the score. + beta < 1: more weight to precision. + beta > 1 more weight to recall + beta = 0: only precision + beta -> inf: only recall + num_classes: number of classes + reduction: method for reducing F-score (default: takes the mean) + Available reduction methods: + + - elementwise_mean: takes the mean + - none: pass array + - sum: add elements. + + Return: + Tensor with the value of F-score. It is a value between 0-1. + """ + prec, rec = precision_recall(pred=pred, target=target, + num_classes=num_classes, + reduction='none') + + nom = (1 + beta ** 2) * prec * rec + denom = ((beta ** 2) * prec + rec) + fbeta = nom / denom + + return reduce(fbeta, reduction=reduction) + + +def f1_score( + pred: torch.Tensor, + target: torch.Tensor, + num_classes: Optional[int] = None, + reduction='elementwise_mean', +) -> torch.Tensor: + """ + Computes F1-score a.k.a F-measure. + + Args: + pred: estimated probabilities + target: ground-truth labels + num_classes: number of classes + reduction: method for reducing F1-score (default: takes the mean) + Available reduction methods: + + - elementwise_mean: takes the mean + - none: pass array + - sum: add elements. + + Return: + Tensor containing F1-score + """ + return fbeta_score(pred=pred, target=target, beta=1., + num_classes=num_classes, reduction=reduction) + + +def _binary_clf_curve( + pred: torch.Tensor, + target: torch.Tensor, + sample_weight: Optional[Sequence] = None, + pos_label: int = 1., +) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: + """ + adapted from https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/_ranking.py + """ + if sample_weight is not None and not isinstance(sample_weight, torch.Tensor): + sample_weight = torch.tensor(sample_weight, device=pred.device, dtype=torch.float) + + # remove class dimension if necessary + if pred.ndim > target.ndim: + pred = pred[:, 0] + desc_score_indices = torch.argsort(pred, descending=True) + + pred = pred[desc_score_indices] + target = target[desc_score_indices] + + if sample_weight is not None: + weight = sample_weight[desc_score_indices] + else: + weight = 1. + + # pred typically has many tied values. Here we extract + # the indices associated with the distinct values. We also + # concatenate a value for the end of the curve. + distinct_value_indices = torch.where(pred[1:] - pred[:-1])[0] + threshold_idxs = torch.cat([distinct_value_indices, + torch.tensor([target.size(0) - 1])]) + + target = (target == pos_label).to(torch.long) + tps = torch.cumsum(target * weight, dim=0)[threshold_idxs] + + if sample_weight is not None: + # express fps as a cumsum to ensure fps is increasing even in + # the presence of floating point errors + fps = torch.cumsum((1 - target) * weight, dim=0)[threshold_idxs] + + else: + fps = 1 + threshold_idxs - tps + + return fps, tps, pred[threshold_idxs] + + +def roc( + pred: torch.Tensor, + target: torch.Tensor, + sample_weight: Optional[Sequence] = None, + pos_label: int = 1., +) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: + """ + Computes the Receiver Operating Characteristic (ROC). It assumes classifier is binary. + + Args: + pred: estimated probabilities + target: ground-truth labels + sample_weight: sample weights + pos_label: the label for the positive class (default: 1) + + Return: + [Tensor, Tensor, Tensor]: false-positive rate (fpr), true-positive rate (tpr), thresholds + """ + fps, tps, thresholds = _binary_clf_curve(pred=pred, target=target, + sample_weight=sample_weight, + pos_label=pos_label) + + # Add an extra threshold position + # to make sure that the curve starts at (0, 0) + tps = torch.cat([torch.zeros(1, dtype=tps.dtype, device=tps.device), tps]) + fps = torch.cat([torch.zeros(1, dtype=fps.dtype, device=fps.device), fps]) + thresholds = torch.cat([thresholds[0][None] + 1, thresholds]) + + if fps[-1] <= 0: + raise ValueError("No negative samples in targets, false positive value should be meaningless") + + fpr = fps / fps[-1] + + if tps[-1] <= 0: + raise ValueError("No positive samples in targets, true positive value should be meaningless") + + tpr = tps / tps[-1] + + return fpr, tpr, thresholds + + +def multiclass_roc( + pred: torch.Tensor, + target: torch.Tensor, + sample_weight: Optional[Sequence] = None, + num_classes: Optional[int] = None, +) -> Tuple[Tuple[torch.Tensor, torch.Tensor, torch.Tensor]]: + """ + Computes the Receiver Operating Characteristic (ROC) for multiclass predictors. + + Args: + pred: estimated probabilities + target: ground-truth labels + sample_weight: sample weights + num_classes: number of classes (default: None, computes automatically from data) + + Return: + [num_classes, Tensor, Tensor, Tensor]: returns roc for each class. + number of classes, false-positive rate (fpr), true-positive rate (tpr), thresholds + """ + num_classes = get_num_classes(pred, target, num_classes) + + class_roc_vals = [] + for c in range(num_classes): + pred_c = pred[:, c] + + class_roc_vals.append(roc(pred=pred_c, target=target, + sample_weight=sample_weight, pos_label=c)) + + return tuple(class_roc_vals) + + +def precision_recall_curve( + pred: torch.Tensor, + target: torch.Tensor, + sample_weight: Optional[Sequence] = None, + pos_label: int = 1., +) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: + """ + Computes precision-recall pairs for different thresholds. + + Args: + pred: estimated probabilities + target: ground-truth labels + sample_weight: sample weights + pos_label: the label for the positive class (default: 1.) + + Return: + [Tensor, Tensor, Tensor]: precision, recall, thresholds + """ + fps, tps, thresholds = _binary_clf_curve(pred=pred, target=target, + sample_weight=sample_weight, + pos_label=pos_label) + + precision = tps / (tps + fps) + recall = tps / tps[-1] + + # stop when full recall attained + # and reverse the outputs so recall is decreasing + last_ind = torch.where(tps == tps[-1])[0][0] + sl = slice(0, last_ind.item() + 1) + + # need to call reversed explicitly, since including that to slice would + # introduce negative strides that are not yet supported in pytorch + precision = torch.cat([reversed(precision[sl]), + torch.ones(1, dtype=precision.dtype, + device=precision.device)]) + + recall = torch.cat([reversed(recall[sl]), + torch.zeros(1, dtype=recall.dtype, + device=recall.device)]) + + thresholds = torch.tensor(reversed(thresholds[sl])) + + return precision, recall, thresholds + + +def multiclass_precision_recall_curve( + pred: torch.Tensor, + target: torch.Tensor, + sample_weight: Optional[Sequence] = None, + num_classes: Optional[int] = None, +) -> Tuple[Tuple[torch.Tensor, torch.Tensor, torch.Tensor]]: + """ + Computes precision-recall pairs for different thresholds given a multiclass scores. + + Args: + pred: estimated probabilities + target: ground-truth labels + sample_weight: sample weight + num_classes: number of classes + + Return: + [num_classes, Tensor, Tensor, Tensor]: number of classes, precision, recall, thresholds + """ + num_classes = get_num_classes(pred, target, num_classes) + + class_pr_vals = [] + for c in range(num_classes): + pred_c = pred[:, c] + + class_pr_vals.append(precision_recall_curve( + pred=pred_c, + target=target, + sample_weight=sample_weight, pos_label=c)) + + return tuple(class_pr_vals) + + +def auc(x: torch.Tensor, y: torch.Tensor, reorder: bool = True): + """ + Computes Area Under the Curve (AUC) using the trapezoidal rule + + Args: + x: x-coordinates + y: y-coordinates + reorder: reorder coordinates, so they are increasing. + + Return: + AUC score (float) + """ + direction = 1. + + if reorder: + # can't use lexsort here since it is not implemented for torch + order = torch.argsort(x) + x, y = x[order], y[order] + else: + dx = x[1:] - x[:-1] + if (dx < 0).any(): + if (dx, 0).all(): + direction = -1. + else: + raise ValueError("Reordering is not turned on, and " + "the x array is not increasing: %s" % x) + + return direction * torch.trapz(y, x) + + +def auc_decorator(reorder: bool = True) -> Callable: + def wrapper(func_to_decorate: Callable) -> Callable: + @wraps(func_to_decorate) + def new_func(*args, **kwargs) -> torch.Tensor: + x, y = func_to_decorate(*args, **kwargs)[:2] + + return auc(x, y, reorder=reorder) + + return new_func + + return wrapper + + +def multiclass_auc_decorator(reorder: bool = True) -> Callable: + def wrapper(func_to_decorate: Callable) -> Callable: + def new_func(*args, **kwargs) -> torch.Tensor: + results = [] + for class_result in func_to_decorate(*args, **kwargs): + x, y = class_result[:2] + results.append(auc(x, y, reorder=reorder)) + + return torch.cat(results) + + return new_func + + return wrapper + + +def auroc( + pred: torch.Tensor, + target: torch.Tensor, + sample_weight: Optional[Sequence] = None, + pos_label: int = 1., +) -> torch.Tensor: + """ + Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC) from prediction scores + + Args: + pred: estimated probabilities + target: ground-truth labels + sample_weight: sample weights + pos_label: the label for the positive class (default: 1.) + """ + + @auc_decorator(reorder=True) + def _auroc(pred, target, sample_weight, pos_label): + return roc(pred, target, sample_weight, pos_label) + + return _auroc(pred=pred, target=target, sample_weight=sample_weight, pos_label=pos_label) + + +def average_precision( + pred: torch.Tensor, + target: torch.Tensor, + sample_weight: Optional[Sequence] = None, + pos_label: int = 1., +) -> torch.Tensor: + precision, recall, _ = precision_recall_curve(pred=pred, target=target, + sample_weight=sample_weight, + pos_label=pos_label) + # Return the step function integral + # The following works because the last entry of precision is + # guaranteed to be 1, as returned by precision_recall_curve + return -torch.sum(recall[1:] - recall[:-1] * precision[:-1]) + + +def dice_score( + pred: torch.Tensor, + target: torch.Tensor, + bg: bool = False, + nan_score: float = 0.0, + no_fg_score: float = 0.0, + reduction: str = 'elementwise_mean', +) -> torch.Tensor: + n_classes = pred.shape[1] + bg = (1 - int(bool(bg))) + scores = torch.zeros(n_classes - bg, device=pred.device, dtype=torch.float32) + for i in range(bg, n_classes): + if not (target == i).any(): + # no foreground class + scores[i - bg] += no_fg_score + continue + + tp, fp, tn, fn = stat_scores(pred=pred, target=target, class_index=i) + + denom = (2 * tp + fp + fn).to(torch.float) + + if torch.isclose(denom, torch.zeros_like(denom)).any(): + # nan result + score_cls = nan_score + else: + score_cls = (2 * tp).to(torch.float) / denom + + scores[i - bg] += score_cls + return reduce(scores, reduction=reduction) diff --git a/pytorch_lightning/metrics/functional/reduction.py b/pytorch_lightning/metrics/functional/reduction.py new file mode 100644 index 0000000000..b9be8ca7da --- /dev/null +++ b/pytorch_lightning/metrics/functional/reduction.py @@ -0,0 +1,24 @@ +import torch + + +def reduce(to_reduce: torch.Tensor, reduction: str) -> torch.Tensor: + """ + Reduces a given tensor by a given reduction method + + Args: + to_reduce : the tensor, which shall be reduced + reduction : a string specifying the reduction method ('elementwise_mean', 'none', 'sum') + + Return: + reduced Tensor + + Raise: + ValueError if an invalid reduction parameter was given + """ + if reduction == 'elementwise_mean': + return torch.mean(to_reduce) + if reduction == 'none': + return to_reduce + if reduction == 'sum': + return torch.sum(to_reduce) + raise ValueError('Reduction parameter unknown.') diff --git a/pytorch_lightning/metrics/metric.py b/pytorch_lightning/metrics/metric.py index bd14655f30..1052f2d7ef 100644 --- a/pytorch_lightning/metrics/metric.py +++ b/pytorch_lightning/metrics/metric.py @@ -3,16 +3,16 @@ from typing import Any, Optional import torch import torch.distributed -from torch.nn import Module -from pytorch_lightning.metrics.converters import tensor_metric, numpy_metric +from pytorch_lightning.metrics.converters import ( + tensor_metric, numpy_metric, tensor_collection_metric) from pytorch_lightning.utilities.apply_func import apply_to_collection from pytorch_lightning.utilities.device_dtype_mixin import DeviceDtypeModuleMixin __all__ = ['Metric', 'TensorMetric', 'NumpyMetric'] -class Metric(ABC, DeviceDtypeModuleMixin, Module): +class Metric(DeviceDtypeModuleMixin, torch.nn.Module, ABC): """ Abstract base class for metric implementation. @@ -20,6 +20,7 @@ class Metric(ABC, DeviceDtypeModuleMixin, Module): 1. Return multiple Outputs 2. Handle their own DDP sync """ + def __init__(self, name: str): """ Args: @@ -49,6 +50,7 @@ class TensorMetric(Metric): All inputs and outputs will be casted to tensors if necessary. Already handles DDP sync and input/output conversions. """ + def __init__(self, name: str, reduce_group: Optional[Any] = None, reduce_op: Optional[Any] = None): @@ -73,6 +75,47 @@ class TensorMetric(Metric): _to_device_dtype) +class TensorCollectionMetric(Metric): + """ + Base class for metric implementation operating directly on tensors. + All inputs will be casted to tensors if necessary. Outputs won't be casted. + Already handles DDP sync and input conversions. + + This class differs from :class:`TensorMetric`, as it assumes all outputs to + be collections of tensors and does not explicitly convert them. This is + necessary, since some collections (like for ROC, Precision-Recall Curve etc.) + cannot be converted to tensors at the highest level. + All numpy arrays and numbers occuring in these outputs will still be converted. + + Use this class as a baseclass, whenever you want to ensure inputs are + tensors and outputs cannot be converted to tensors automatically + + """ + + def __init__(self, name: str, + reduce_group: Optional[Any] = None, + reduce_op: Optional[Any] = None): + """ + + Args: + name: the metric's name + reduce_group: the process group for DDP reduces (only needed for DDP training). + Defaults to all processes (world) + reduce_op: the operation to perform during reduction within DDP (only needed for DDP training). + Defaults to sum. + """ + super().__init__(name) + self._orig_call = tensor_collection_metric(group=reduce_group, + reduce_op=reduce_op)(super().__call__) + + def __call__(self, *args, **kwargs) -> torch.Tensor: + def _to_device_dtype(x: torch.Tensor) -> torch.Tensor: + return x.to(device=self.device, dtype=self.dtype, non_blocking=True) + + return apply_to_collection(self._orig_call(*args, **kwargs), torch.Tensor, + _to_device_dtype) + + class NumpyMetric(Metric): """ Base class for metric implementation operating on numpy arrays. @@ -80,6 +123,7 @@ class NumpyMetric(Metric): be casted to tensors if necessary. Already handles DDP sync and input/output conversions. """ + def __init__(self, name: str, reduce_group: Optional[Any] = None, reduce_op: Optional[Any] = None): diff --git a/pytorch_lightning/metrics/utils.py b/pytorch_lightning/metrics/utils.py deleted file mode 100644 index 0829c9711c..0000000000 --- a/pytorch_lightning/metrics/utils.py +++ /dev/null @@ -1,130 +0,0 @@ -import numbers -from typing import Union, Any, Optional - -import numpy as np -import torch -from torch.utils.data._utils.collate import default_convert - -from pytorch_lightning.utilities.apply_func import apply_to_collection - - -def _apply_to_inputs(func_to_apply, *dec_args, **dec_kwargs): - def decorator_fn(func_to_decorate): - def new_func(*args, **kwargs): - args = func_to_apply(args, *dec_args, **dec_kwargs) - kwargs = func_to_apply(kwargs, *dec_args, **dec_kwargs) - return func_to_decorate(*args, **kwargs) - - return new_func - - return decorator_fn - - -def _apply_to_outputs(func_to_apply, *dec_args, **dec_kwargs): - def decorator_fn(function_to_decorate): - def new_func(*args, **kwargs): - result = function_to_decorate(*args, **kwargs) - return func_to_apply(result, *dec_args, **dec_kwargs) - - return new_func - - return decorator_fn - - -def _convert_to_tensor(data: Any) -> Any: - """ - Maps all kind of collections and numbers to tensors - - Args: - data: the data to convert to tensor - - Returns: - the converted data - - """ - if isinstance(data, numbers.Number): - return torch.tensor([data]) - else: - return default_convert(data) - - -def _convert_to_numpy(data: Union[torch.Tensor, np.ndarray, numbers.Number]) -> np.ndarray: - """ - converts all tensors and numpy arrays to numpy arrays - Args: - data: the tensor or array to convert to numpy - - Returns: - the resulting numpy array - - """ - if isinstance(data, torch.Tensor): - return data.cpu().detach().numpy() - elif isinstance(data, numbers.Number): - return np.array([data]) - return data - - -def _numpy_metric_conversion(func_to_decorate): - # Applies collection conversion from tensor to numpy to all inputs - # we need to include numpy arrays here, since otherwise they will also be treated as sequences - func_convert_inputs = _apply_to_inputs( - apply_to_collection, (torch.Tensor, np.ndarray, numbers.Number), _convert_to_numpy)(func_to_decorate) - # converts all inputs back to tensors (device doesn't matter here, since this is handled by BaseMetric) - func_convert_in_out = _apply_to_outputs(_convert_to_tensor)(func_convert_inputs) - return func_convert_in_out - - -def _tensor_metric_conversion(func_to_decorate): - # Converts all inputs to tensor if possible - func_convert_inputs = _apply_to_inputs(_convert_to_tensor)(func_to_decorate) - # convert all outputs to tensor if possible - return _apply_to_outputs(_convert_to_tensor)(func_convert_inputs) - - -def _sync_ddp(result: Union[torch.Tensor], - group: Any = torch.distributed.group.WORLD, - reduce_op: torch.distributed.ReduceOp = torch.distributed.ReduceOp.SUM, - ) -> torch.Tensor: - """ - Function to reduce the tensors from several ddp processes to one master process - - Args: - result: the value to sync and reduce (typically tensor or number) - device: the device to put the synced and reduced value to - dtype: the datatype to convert the synced and reduced value to - group: the process group to gather results from. Defaults to all processes (world) - reduce_op: the reduction operation. Defaults to sum - - Returns: - reduced value - - """ - - if torch.distributed.is_available() and torch.distributed.is_initialized(): - # sync all processes before reduction - torch.distributed.barrier(group=group) - torch.distributed.all_reduce(result, op=reduce_op, group=group, - async_op=False) - - return result - - -def numpy_metric(group: Any = torch.distributed.group.WORLD, - reduce_op: torch.distributed.ReduceOp = torch.distributed.ReduceOp.SUM): - def decorator_fn(func_to_decorate): - return _apply_to_outputs(apply_to_collection, torch.Tensor, _sync_ddp, - group=group, - reduce_op=reduce_op)(_numpy_metric_conversion(func_to_decorate)) - - return decorator_fn - - -def tensor_metric(group: Any = torch.distributed.group.WORLD, - reduce_op: torch.distributed.ReduceOp = torch.distributed.ReduceOp.SUM): - def decorator_fn(func_to_decorate): - return _apply_to_outputs(apply_to_collection, torch.Tensor, _sync_ddp, - group=group, - reduce_op=reduce_op)(_tensor_metric_conversion(func_to_decorate)) - - return decorator_fn diff --git a/tests/metrics/functional/test_classification.py b/tests/metrics/functional/test_classification.py new file mode 100644 index 0000000000..a55a049a9a --- /dev/null +++ b/tests/metrics/functional/test_classification.py @@ -0,0 +1,309 @@ +import pytest +import torch + +from pytorch_lightning import seed_everything +from pytorch_lightning.metrics.functional.classification import ( + to_onehot, + to_categorical, + get_num_classes, + stat_scores, + stat_scores_multiple_classes, + accuracy, + confusion_matrix, + precision, + recall, + fbeta_score, + f1_score, + _binary_clf_curve, + dice_score, + average_precision, + auroc, + precision_recall_curve, + roc, + auc, +) + + +def test_onehot(): + test_tensor = torch.tensor([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]) + expected = torch.tensor([ + [ + [1, 0, 0, 0, 0], + [0, 1, 0, 0, 0], + [0, 0, 1, 0, 0], + [0, 0, 0, 1, 0], + [0, 0, 0, 0, 1], + [0, 0, 0, 0, 0], + [0, 0, 0, 0, 0], + [0, 0, 0, 0, 0], + [0, 0, 0, 0, 0], + [0, 0, 0, 0, 0] + ], [ + [0, 0, 0, 0, 0], + [0, 0, 0, 0, 0], + [0, 0, 0, 0, 0], + [0, 0, 0, 0, 0], + [0, 0, 0, 0, 0], + [1, 0, 0, 0, 0], + [0, 1, 0, 0, 0], + [0, 0, 1, 0, 0], + [0, 0, 0, 1, 0], + [0, 0, 0, 0, 1] + ] + ]) + + assert test_tensor.shape == (2, 5) + assert expected.shape == (2, 10, 5) + + onehot_classes = to_onehot(test_tensor, n_classes=10) + onehot_no_classes = to_onehot(test_tensor) + + assert torch.allclose(onehot_classes, onehot_no_classes) + + assert onehot_classes.shape == expected.shape + assert onehot_no_classes.shape == expected.shape + + assert torch.allclose(expected.to(onehot_no_classes), onehot_no_classes) + assert torch.allclose(expected.to(onehot_classes), onehot_classes) + + +def test_to_categorical(): + test_tensor = torch.tensor([ + [ + [1, 0, 0, 0, 0], + [0, 1, 0, 0, 0], + [0, 0, 1, 0, 0], + [0, 0, 0, 1, 0], + [0, 0, 0, 0, 1], + [0, 0, 0, 0, 0], + [0, 0, 0, 0, 0], + [0, 0, 0, 0, 0], + [0, 0, 0, 0, 0], + [0, 0, 0, 0, 0] + ], [ + [0, 0, 0, 0, 0], + [0, 0, 0, 0, 0], + [0, 0, 0, 0, 0], + [0, 0, 0, 0, 0], + [0, 0, 0, 0, 0], + [1, 0, 0, 0, 0], + [0, 1, 0, 0, 0], + [0, 0, 1, 0, 0], + [0, 0, 0, 1, 0], + [0, 0, 0, 0, 1] + ] + ]).to(torch.float) + + expected = torch.tensor([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]) + assert expected.shape == (2, 5) + assert test_tensor.shape == (2, 10, 5) + + result = to_categorical(test_tensor) + + assert result.shape == expected.shape + assert torch.allclose(result, expected.to(result.dtype)) + + +@pytest.mark.parametrize(['pred', 'target', 'num_classes', 'expected_num_classes'], [ + pytest.param(torch.rand(32, 10, 28, 28), torch.randint(10, (32, 28, 28)), 10, 10), + pytest.param(torch.rand(32, 10, 28, 28), torch.randint(10, (32, 28, 28)), None, 10), + pytest.param(torch.rand(32, 28, 28), torch.randint(10, (32, 28, 28)), None, 10), +]) +def test_get_num_classes(pred, target, num_classes, expected_num_classes): + assert get_num_classes(pred, target, num_classes) == expected_num_classes + + +@pytest.mark.parametrize(['pred', 'target', 'expected_tp', 'expected_fp', 'expected_tn', 'expected_fn'], [ + pytest.param(torch.tensor([0., 2., 4., 4.]), torch.tensor([0., 4., 3., 4.]), 1, 1, 1, 1), + pytest.param(to_onehot(torch.tensor([0., 2., 4., 4.])), torch.tensor([0., 4., 3., 4.]), 1, 1, 1, 1) +]) +def test_stat_scores(pred, target, expected_tp, expected_fp, expected_tn, expected_fn): + tp, fp, tn, fn = stat_scores(pred, target, class_index=4) + + assert tp.item() == expected_tp + assert fp.item() == expected_fp + assert tn.item() == expected_tn + assert fn.item() == expected_fn + + +@pytest.mark.parametrize(['pred', 'target', 'expected_tp', 'expected_fp', 'expected_tn', 'expected_fn'], [ + pytest.param(torch.tensor([0., 2., 4., 4.]), torch.tensor([0., 4., 3., 4.]), + [1, 0, 0, 0, 1], [0, 0, 1, 0, 1], [3, 4, 3, 3, 1], [0, 0, 0, 1, 1]), + pytest.param(to_onehot(torch.tensor([0., 2., 4., 4.])), torch.tensor([0., 4., 3., 4.]), + [1, 0, 0, 0, 1], [0, 0, 1, 0, 1], [3, 4, 3, 3, 1], [0, 0, 0, 1, 1]) +]) +def test_stat_scores_multiclass(pred, target, expected_tp, expected_fp, expected_tn, expected_fn): + tp, fp, tn, fn = stat_scores_multiple_classes(pred, target) + + assert torch.allclose(torch.tensor(expected_tp).to(tp), tp) + assert torch.allclose(torch.tensor(expected_fp).to(fp), fp) + assert torch.allclose(torch.tensor(expected_tn).to(tn), tn) + assert torch.allclose(torch.tensor(expected_fn).to(fn), fn) + + +def test_multilabel_accuracy(): + # Dense label indicator matrix format + y1 = torch.tensor([[0, 1, 1], [1, 0, 1]]) + y2 = torch.tensor([[0, 0, 1], [1, 0, 1]]) + + assert torch.allclose(accuracy(y1, y2, reduction='none'), torch.tensor([0.8333333134651184] * 2)) + assert torch.allclose(accuracy(y1, y1, reduction='none'), torch.tensor([1., 1.])) + assert torch.allclose(accuracy(y2, y2, reduction='none'), torch.tensor([1., 1.])) + assert torch.allclose(accuracy(y2, torch.logical_not(y2), reduction='none'), torch.tensor([0., 0.])) + assert torch.allclose(accuracy(y1, torch.logical_not(y1), reduction='none'), torch.tensor([0., 0.])) + + with pytest.raises(RuntimeError): + accuracy(y2, torch.zeros_like(y2), reduction='none') + + +def test_confusion_matrix(): + target = (torch.arange(120) % 3).view(-1, 1) + pred = target.clone() + cm = confusion_matrix(pred, target, normalize=True) + + assert torch.allclose(cm, torch.tensor([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]])) + + pred = torch.zeros_like(pred) + cm = confusion_matrix(pred, target, normalize=True) + assert torch.allclose(cm, torch.tensor([[1., 0., 0.], [1., 0., 0.], [1., 0., 0.]])) + + +@pytest.mark.parametrize(['pred', 'target', 'expected_prec', 'expected_rec'], [ + pytest.param(torch.tensor([1., 0., 1., 0.]), torch.tensor([0., 1., 1., 0.]), [0.5, 0.5], [0.5, 0.5]), + pytest.param(to_onehot(torch.tensor([1., 0., 1., 0.])), torch.tensor([0., 1., 1., 0.]), [0.5, 0.5], [0.5, 0.5]) +]) +def test_precision_recall(pred, target, expected_prec, expected_rec): + prec = precision(pred, target, reduction='none') + rec = recall(pred, target, reduction='none') + + assert torch.allclose(torch.tensor(expected_prec).to(prec), prec) + assert torch.allclose(torch.tensor(expected_rec).to(rec), rec) + + +@pytest.mark.parametrize(['pred', 'target', 'beta', 'exp_score'], [ + pytest.param([1., 0., 1., 0.], [0., 1., 1., 0.], 0.5, [0.5, 0.5]), + pytest.param([1., 0., 1., 0.], [0., 1., 1., 0.], 1, [0.5, 0.5]), + pytest.param([1., 0., 1., 0.], [0., 1., 1., 0.], 2, [0.5, 0.5]), +]) +def test_fbeta_score(pred, target, beta, exp_score): + score = fbeta_score(torch.tensor(pred), torch.tensor(target), beta, reduction='none') + assert torch.allclose(score, torch.tensor(exp_score)) + + score = fbeta_score(to_onehot(torch.tensor(pred)), torch.tensor(target), beta, reduction='none') + assert torch.allclose(score, torch.tensor(exp_score)) + + +@pytest.mark.parametrize(['pred', 'target', 'exp_score'], [ + pytest.param([1., 0., 1., 0.], [0., 1., 1., 0.], [0.5, 0.5]), +]) +def test_f1_score(pred, target, exp_score): + score = f1_score(torch.tensor(pred), torch.tensor(target), reduction='none') + assert torch.allclose(score, torch.tensor(exp_score)) + + score = f1_score(to_onehot(torch.tensor(pred)), torch.tensor(target), reduction='none') + assert torch.allclose(score, torch.tensor(exp_score)) + + +@pytest.mark.parametrize(['sample_weight', 'pos_label', "exp_shape"], [ + pytest.param(1, 1., 42), + pytest.param(None, 1., 42), +]) +def test_binary_clf_curve(sample_weight, pos_label, exp_shape): + # TODO: move back the pred and target to test func arguments + # if you fix the array inside the function, you'd also have fix the shape, + # because when the array changes, you also have to fix the shape + seed_everything(0) + pred = torch.randint(low=51, high=99, size=(100,), dtype=torch.float) / 100 + target = torch.tensor([0, 1] * 50, dtype=torch.int) + if sample_weight is not None: + sample_weight = torch.ones_like(pred) * sample_weight + + fps, tps, thresh = _binary_clf_curve(pred, target, sample_weight, pos_label) + + assert isinstance(tps, torch.Tensor) + assert isinstance(fps, torch.Tensor) + assert isinstance(thresh, torch.Tensor) + assert tps.shape == (exp_shape,) + assert fps.shape == (exp_shape,) + assert thresh.shape == (exp_shape,) + + +@pytest.mark.parametrize(['pred', 'target', 'expected_p', 'expected_r', 'expected_t'], [ + pytest.param([1, 2, 3, 4], [1, 0, 0, 1], [0.5, 1 / 3, 0.5, 1., 1.], [1, 0.5, 0.5, 0.5, 0.], [1, 2, 3, 4]) +]) +def test_pr_curve(pred, target, expected_p, expected_r, expected_t): + p, r, t = precision_recall_curve(torch.tensor(pred), torch.tensor(target)) + assert p.size() == r.size() + assert p.size(0) == t.size(0) + 1 + + assert torch.allclose(p, torch.tensor(expected_p).to(p)) + assert torch.allclose(r, torch.tensor(expected_r).to(r)) + assert torch.allclose(t, torch.tensor(expected_t).to(t)) + + +@pytest.mark.parametrize(['pred', 'target', 'expected_tpr', 'expected_fpr'], [ + pytest.param([0, 1], [0, 1], [0, 1, 1], [0, 0, 1]), + pytest.param([1, 0], [0, 1], [0, 0, 1], [0, 1, 1]), + pytest.param([1, 1], [1, 0], [0, 1], [0, 1]), + pytest.param([1, 0], [1, 0], [0, 1, 1], [0, 0, 1]), + pytest.param([0.5, 0.5], [0, 1], [0, 1], [0, 1]), +]) +def test_roc_curve(pred, target, expected_tpr, expected_fpr): + fpr, tpr, thresh = roc(torch.tensor(pred), torch.tensor(target)) + + assert fpr.shape == tpr.shape + assert fpr.size(0) == thresh.size(0) + assert torch.allclose(fpr, torch.tensor(expected_fpr).to(fpr)) + assert torch.allclose(tpr, torch.tensor(expected_tpr).to(tpr)) + + +@pytest.mark.parametrize(['pred', 'target', 'expected'], [ + pytest.param([0, 0, 1, 1], [0, 0, 1, 1], 1.), + pytest.param([1, 1, 0, 0], [0, 0, 1, 1], 0.), + pytest.param([1, 1, 1, 1], [1, 1, 0, 0], 0.5), + pytest.param([1, 1, 0, 0], [1, 1, 0, 0], 1.), + pytest.param([0.5, 0.5, 0.5, 0.5], [1, 1, 0, 0], 0.5), +]) +def test_auroc(pred, target, expected): + score = auroc(torch.tensor(pred), torch.tensor(target)).item() + assert score == expected + + +@pytest.mark.parametrize(['x', 'y', 'expected'], [ + pytest.param([0, 1], [0, 1], 0.5), + pytest.param([1, 0], [0, 1], 0.5), + pytest.param([1, 0, 0], [0, 1, 1], 0.5), + pytest.param([0, 1], [1, 1], 1), + pytest.param([0, 0.5, 1], [0, 0.5, 1], 0.5), +]) +def test_auc(x, y, expected): + # Test Area Under Curve (AUC) computation + assert auc(torch.tensor(x), torch.tensor(y)) == expected + + +def test_average_precision_constant_values(): + # Check the average_precision_score of a constant predictor is + # the TPR + + # Generate a dataset with 25% of positives + target = torch.zeros(100, dtype=torch.float) + target[::4] = 1 + # And a constant score + pred = torch.ones(100) + # The precision is then the fraction of positive whatever the recall + # is, as there is only one threshold: + assert average_precision(pred, target).item() == .25 + + +@pytest.mark.parametrize(['pred', 'target', 'expected'], [ + pytest.param([[0, 0], [1, 1]], [[0, 0], [1, 1]], 1.), + pytest.param([[1, 1], [0, 0]], [[0, 0], [1, 1]], 0.), + pytest.param([[1, 1], [1, 1]], [[1, 1], [0, 0]], 2 / 3), + pytest.param([[1, 1], [0, 0]], [[1, 1], [0, 0]], 1.), +]) +def test_dice_score(pred, target, expected): + score = dice_score(torch.tensor(pred), torch.tensor(target)) + assert score == expected + +# example data taken from +# https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/tests/test_ranking.py diff --git a/tests/metrics/functional/test_reduction.py b/tests/metrics/functional/test_reduction.py new file mode 100644 index 0000000000..71d2b6f773 --- /dev/null +++ b/tests/metrics/functional/test_reduction.py @@ -0,0 +1,15 @@ +import pytest +import torch + +from pytorch_lightning.metrics.functional.reduction import reduce + + +def test_reduce(): + start_tensor = torch.rand(50, 40, 30) + + assert torch.allclose(reduce(start_tensor, 'elementwise_mean'), torch.mean(start_tensor)) + assert torch.allclose(reduce(start_tensor, 'sum'), torch.sum(start_tensor)) + assert torch.allclose(reduce(start_tensor, 'none'), start_tensor) + + with pytest.raises(ValueError): + reduce(start_tensor, 'error_reduction') diff --git a/tests/metrics/test_classification.py b/tests/metrics/test_classification.py new file mode 100644 index 0000000000..1d89a0b1ab --- /dev/null +++ b/tests/metrics/test_classification.py @@ -0,0 +1,227 @@ +# NOTE: This file only tests if modules with arguments are running fine. +# The actual metric implementation is tested in functional/test_classification.py +# Especially reduction and reducing across processes won't be tested here! + +import pytest +import torch + +from pytorch_lightning.metrics.classification import ( + Accuracy, + ConfusionMatrix, + PrecisionRecall, + Precision, + Recall, + AveragePrecision, + AUROC, + FBeta, + F1, + ROC, + MulticlassROC, + MulticlassPrecisionRecall, + DiceCoefficient, +) + + +@pytest.fixture +def random(): + torch.manual_seed(0) + + +@pytest.mark.parametrize('num_classes', [1, None]) +def test_accuracy(num_classes): + acc = Accuracy(num_classes=num_classes) + + assert acc.name == 'accuracy' + + result = acc(pred=torch.tensor([[0, 1, 1], [1, 0, 1]]), + target=torch.tensor([[0, 0, 1], [1, 0, 1]])) + + assert isinstance(result, torch.Tensor) + + +@pytest.mark.parametrize('normalize', [False, True]) +def test_confusion_matrix(normalize): + conf_matrix = ConfusionMatrix(normalize=normalize) + assert conf_matrix.name == 'confusion_matrix' + + target = (torch.arange(120) % 3).view(-1, 1) + pred = target.clone() + + cm = conf_matrix(pred, target) + + assert isinstance(cm, torch.Tensor) + + +@pytest.mark.parametrize('pos_label', [1, 2.]) +def test_precision_recall(pos_label): + pred, target = torch.tensor([1, 2, 3, 4]), torch.tensor([1, 0, 0, 1]) + + pr_curve = PrecisionRecall(pos_label=pos_label) + assert pr_curve.name == 'precision_recall_curve' + + pr = pr_curve(pred=pred, target=target, sample_weight=[0.1, 0.2, 0.3, 0.4]) + + assert isinstance(pr, tuple) + assert len(pr) == 3 + for tmp in pr: + assert isinstance(tmp, torch.Tensor) + + +@pytest.mark.parametrize('num_classes', [1, None]) +def test_precision(num_classes): + precision = Precision(num_classes=num_classes) + + assert precision.name == 'precision' + pred, target = torch.tensor([1, 2, 3, 4]), torch.tensor([1, 0, 0, 1]) + + prec = precision(pred=pred, target=target) + + assert isinstance(prec, torch.Tensor) + + +@pytest.mark.parametrize('num_classes', [1, None]) +def test_recall(num_classes): + recall = Recall(num_classes=num_classes) + + assert recall.name == 'recall' + pred, target = torch.tensor([1, 2, 3, 4]), torch.tensor([1, 0, 0, 1]) + + rec = recall(pred=pred, target=target) + + assert isinstance(rec, torch.Tensor) + + +@pytest.mark.parametrize('pos_label', [1, 2]) +def test_average_precision(pos_label): + pred, target = torch.tensor([1, 2, 3, 4]), torch.tensor([1, 2, 0, 1]) + + avg_prec = AveragePrecision(pos_label=pos_label) + assert avg_prec.name == 'AP' + + ap = avg_prec(pred=pred, target=target, sample_weight=[0.1, 0.2, 0.3, 0.4]) + + assert isinstance(ap, torch.Tensor) + + +@pytest.mark.parametrize('pos_label', [1, 2]) +def test_auroc(pos_label): + pred, target = torch.tensor([1, 2, 3, 4]), torch.tensor([1, 2, 0, 1]) + + auroc = AUROC(pos_label=pos_label) + assert auroc.name == 'auroc' + + area = auroc(pred=pred, target=target, sample_weight=[0.1, 0.2, 0.3, 0.4]) + + assert isinstance(area, torch.Tensor) + + +@pytest.mark.parametrize(['beta', 'num_classes'], [ + pytest.param(0., 1), + pytest.param(0.5, 1), + pytest.param(1., 1), + pytest.param(2., 1), + pytest.param(0., None), + pytest.param(0.5, None), + pytest.param(1., None), + pytest.param(2., None) +]) +def test_fbeta(beta, num_classes): + fbeta = FBeta(beta=beta, num_classes=num_classes) + assert fbeta.name == 'fbeta' + + score = fbeta(pred=torch.tensor([[0, 1, 1], [1, 0, 1]]), + target=torch.tensor([[0, 0, 1], [1, 0, 1]])) + + assert isinstance(score, torch.Tensor) + + +@pytest.mark.parametrize('num_classes', [1, None]) +def test_f1(num_classes): + f1 = F1(num_classes=num_classes) + assert f1.name == 'f1' + + score = f1(pred=torch.tensor([[0, 1, 1], [1, 0, 1]]), + target=torch.tensor([[0, 0, 1], [1, 0, 1]])) + + assert isinstance(score, torch.Tensor) + + +@pytest.mark.parametrize('pos_label', [1, 2]) +def test_roc(pos_label): + pred, target = torch.tensor([1, 2, 3, 4]), torch.tensor([1, 2, 4, 3]) + + roc = ROC(pos_label=pos_label) + assert roc.name == 'roc' + + res = roc(pred=pred, target=target, sample_weight=[0.1, 0.2, 0.3, 0.4]) + + assert isinstance(res, tuple) + assert len(res) == 3 + for tmp in res: + assert isinstance(tmp, torch.Tensor) + + +@pytest.mark.parametrize('num_classes', [4, None]) +def test_multiclass_roc(num_classes): + pred = torch.tensor([[0.85, 0.05, 0.05, 0.05], + [0.05, 0.85, 0.05, 0.05], + [0.05, 0.05, 0.85, 0.05], + [0.05, 0.05, 0.05, 0.85]]) + target = torch.tensor([0, 1, 3, 2]) + + multi_roc = MulticlassROC(num_classes=num_classes) + + assert multi_roc.name == 'multiclass_roc' + + res = multi_roc(pred, target) + + assert isinstance(res, tuple) + + if num_classes is not None: + assert len(res) == num_classes + + for tmp in res: + assert isinstance(tmp, tuple) + assert len(tmp) == 3 + + for _tmp in tmp: + assert isinstance(_tmp, torch.Tensor) + + +@pytest.mark.parametrize('num_classes', [4, None]) +def test_multiclass_pr(num_classes): + pred = torch.tensor([[0.85, 0.05, 0.05, 0.05], + [0.05, 0.85, 0.05, 0.05], + [0.05, 0.05, 0.85, 0.05], + [0.05, 0.05, 0.05, 0.85]]) + target = torch.tensor([0, 1, 3, 2]) + + multi_pr = MulticlassPrecisionRecall(num_classes=num_classes) + + assert multi_pr.name == 'multiclass_precision_recall_curve' + + pr = multi_pr(pred, target) + + assert isinstance(pr, tuple) + + if num_classes is not None: + assert len(pr) == num_classes + + for tmp in pr: + assert isinstance(tmp, tuple) + assert len(tmp) == 3 + + for _tmp in tmp: + assert isinstance(_tmp, torch.Tensor) + + +@pytest.mark.parametrize('include_background', [True, False]) +def test_dice_coefficient(include_background): + dice_coeff = DiceCoefficient(include_background=include_background) + + assert dice_coeff.name == 'dice' + + dice = dice_coeff(torch.randint(0, 1, (10, 25, 25)), + torch.randint(0, 1, (10, 25, 25))) + + assert isinstance(dice, torch.Tensor) diff --git a/tests/metrics/test_converters.py b/tests/metrics/test_converters.py index 9abc11d4b0..b6c102b1fd 100644 --- a/tests/metrics/test_converters.py +++ b/tests/metrics/test_converters.py @@ -6,16 +6,19 @@ import torch.multiprocessing as mp import tests.base.utils as tutils from pytorch_lightning.metrics.converters import ( - _apply_to_inputs, _apply_to_outputs, _convert_to_tensor, _convert_to_numpy, - _numpy_metric_conversion, _tensor_metric_conversion, _sync_ddp_if_available, tensor_metric, numpy_metric) + _apply_to_inputs, + _apply_to_outputs, + _convert_to_tensor, + _convert_to_numpy, + _numpy_metric_conversion, + _tensor_metric_conversion, + _sync_ddp_if_available, + tensor_metric, + numpy_metric +) -@pytest.mark.parametrize(['args', 'kwargs'], - [pytest.param([], {}), - pytest.param([1., 2.], {}), - pytest.param([], {'a': 1., 'b': 2.}), - pytest.param([1., 2.], {'a': 1., 'b': 2.})]) -def test_apply_to_inputs(args, kwargs): +def test_apply_to_inputs(): def apply_fn(inputs, factor): if isinstance(inputs, (float, int)): return inputs * factor @@ -25,22 +28,24 @@ def test_apply_to_inputs(args, kwargs): return [apply_fn(x, factor) for x in inputs] @_apply_to_inputs(apply_fn, factor=2.) - def test_fn(*func_args, **func_kwargs): - return func_args, func_kwargs + def test_fn(*args, **kwargs): + return args, kwargs - result_args, result_kwargs = test_fn(*args, **kwargs) - assert isinstance(result_args, (list, tuple)) - assert isinstance(result_kwargs, dict) - assert len(result_args) == len(args) - assert len(result_kwargs) == len(kwargs) - assert all([k in result_kwargs for k in kwargs.keys()]) - for arg, result_arg in zip(args, result_args): - assert arg * 2. == result_arg + for args in [[], [1., 2.]]: + for kwargs in [{}, {'a': 1., 'b': 2.}]: + result_args, result_kwargs = test_fn(*args, **kwargs) + assert isinstance(result_args, (list, tuple)) + assert isinstance(result_kwargs, dict) + assert len(result_args) == len(args) + assert len(result_kwargs) == len(kwargs) + assert all([k in result_kwargs for k in kwargs.keys()]) + for arg, result_arg in zip(args, result_args): + assert arg * 2. == result_arg - for key in kwargs.keys(): - arg = kwargs[key] - result_arg = result_kwargs[key] - assert arg * 2. == result_arg + for key in kwargs.keys(): + arg = kwargs[key] + result_arg = result_kwargs[key] + assert arg * 2. == result_arg def test_apply_to_outputs(): @@ -100,7 +105,7 @@ def test_tensor_metric_conversion(): assert result.item() == 5. -def setup_ddp(rank, worldsize, ): +def _setup_ddp(rank, worldsize): import os os.environ['MASTER_ADDR'] = 'localhost' @@ -109,8 +114,8 @@ def setup_ddp(rank, worldsize, ): dist.init_process_group("gloo", rank=rank, world_size=worldsize) -def ddp_test_fn(rank, worldsize): - setup_ddp(rank, worldsize) +def _ddp_test_fn(rank, worldsize): + _setup_ddp(rank, worldsize) tensor = torch.tensor([1.], device='cuda:0') reduced_tensor = _sync_ddp_if_available(tensor) @@ -119,6 +124,7 @@ def ddp_test_fn(rank, worldsize): 'Sync-Reduce does not work properly with DDP and Tensors' +@pytest.mark.spawn @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine") def test_sync_reduce_ddp(): """Make sure sync-reduce works with DDP""" @@ -126,7 +132,9 @@ def test_sync_reduce_ddp(): tutils.set_random_master_port() worldsize = 2 - mp.spawn(ddp_test_fn, args=(worldsize,), nprocs=worldsize) + mp.spawn(_ddp_test_fn, args=(worldsize,), nprocs=worldsize) + + # dist.destroy_process_group() def test_sync_reduce_simple(): @@ -161,16 +169,18 @@ def _test_tensor_metric(is_ddp: bool): def _ddp_test_tensor_metric(rank, worldsize): - setup_ddp(rank, worldsize) + _setup_ddp(rank, worldsize) _test_tensor_metric(True) +@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine") def test_tensor_metric_ddp(): tutils.reset_seed() tutils.set_random_master_port() world_size = 2 mp.spawn(_ddp_test_tensor_metric, args=(world_size,), nprocs=world_size) + # dist.destroy_process_group() def test_tensor_metric_simple(): @@ -199,16 +209,19 @@ def _test_numpy_metric(is_ddp: bool): def _ddp_test_numpy_metric(rank, worldsize): - setup_ddp(rank, worldsize) + _setup_ddp(rank, worldsize) _test_numpy_metric(True) +@pytest.mark.spawn +@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine") def test_numpy_metric_ddp(): tutils.reset_seed() tutils.set_random_master_port() world_size = 2 mp.spawn(_ddp_test_numpy_metric, args=(world_size,), nprocs=world_size) + # dist.destroy_process_group() def test_numpy_metric_simple(): - _test_tensor_metric(False) + _test_numpy_metric(False) diff --git a/tests/metrics/test_metrics.py b/tests/metrics/test_metrics.py index e83a9d97b7..7e2c7e45c2 100644 --- a/tests/metrics/test_metrics.py +++ b/tests/metrics/test_metrics.py @@ -1,7 +1,7 @@ import numpy as np import torch -from pytorch_lightning.metrics.metric import Metric, TensorMetric, NumpyMetric +from pytorch_lightning.metrics.metric import Metric, TensorMetric, NumpyMetric, TensorCollectionMetric class DummyTensorMetric(TensorMetric): @@ -24,7 +24,65 @@ class DummyNumpyMetric(NumpyMetric): return 1. +class DummyTensorCollectionMetric(TensorCollectionMetric): + def __init__(self): + super().__init__('dummy') + + def forward(self, input1, input2): + assert isinstance(input1, torch.Tensor) + assert isinstance(input2, torch.Tensor) + return 1., 2., 3., 4. + + +def _test_collection_metric(metric: Metric): + """ Test that metric.device, metric.dtype works for metric collection """ + input1, input2 = torch.tensor([1.]), torch.tensor([2.]) + + def change_and_check_device_dtype(device, dtype): + metric.to(device=device, dtype=dtype) + + metric_val = metric(input1, input2) + assert not isinstance(metric_val, torch.Tensor) + + if device is not None: + assert metric.device in [device, torch.device(device)] + + if dtype is not None: + assert metric.dtype == dtype + + devices = [None, 'cpu'] + if torch.cuda.is_available(): + devices += ['cuda:0'] + + for device in devices: + for dtype in [None, torch.float32, torch.float64]: + change_and_check_device_dtype(device=device, dtype=dtype) + + if torch.cuda.is_available(): + metric.cuda(0) + assert metric.device == torch.device('cuda', index=0) + + metric.cpu() + assert metric.device == torch.device('cpu') + + metric.type(torch.int8) + assert metric.dtype == torch.int8 + + metric.float() + assert metric.dtype == torch.float32 + + metric.double() + assert metric.dtype == torch.float64 + assert all(out.dtype == torch.float64 for out in metric(input1, input2)) + + if torch.cuda.is_available(): + metric.cuda() + metric.half() + assert metric.dtype == torch.float16 + + def _test_metric(metric: Metric): + """ Test that metric.device, metric.dtype works for single metric""" input1, input2 = torch.tensor([1.]), torch.tensor([2.]) def change_and_check_device_dtype(device, dtype): @@ -83,3 +141,7 @@ def test_tensor_metric(): def test_numpy_metric(): _test_metric(DummyNumpyMetric()) + + +def test_tensor_collection(): + _test_collection_metric(DummyTensorCollectionMetric()) diff --git a/tests/metrics/test_sklearn_metrics.py b/tests/metrics/test_sklearn_metrics.py index e075330d60..cf23c83e9f 100644 --- a/tests/metrics/test_sklearn_metrics.py +++ b/tests/metrics/test_sklearn_metrics.py @@ -5,13 +5,24 @@ from functools import partial import numpy as np import pytest import torch -from sklearn.metrics import (accuracy_score, average_precision_score, auc, confusion_matrix, f1_score, - fbeta_score, precision_score, recall_score, precision_recall_curve, roc_curve, - roc_auc_score) +from sklearn.metrics import ( + accuracy_score, + average_precision_score, + auc, + confusion_matrix, + f1_score, + fbeta_score, + precision_score, + recall_score, + precision_recall_curve, + roc_curve, + roc_auc_score +) from pytorch_lightning.metrics.converters import _convert_to_numpy -from pytorch_lightning.metrics.sklearn import (Accuracy, AveragePrecision, AUC, ConfusionMatrix, F1, FBeta, - Precision, Recall, PrecisionRecallCurve, ROC, AUROC) +from pytorch_lightning.metrics.sklearn import ( + Accuracy, AveragePrecision, AUC, ConfusionMatrix, F1, FBeta, + Precision, Recall, PrecisionRecallCurve, ROC, AUROC) from pytorch_lightning.utilities.apply_func import apply_to_collection @@ -25,37 +36,38 @@ def xy_only(func): @pytest.mark.parametrize(['metric_class', 'sklearn_func', 'inputs'], [ pytest.param(Accuracy(), accuracy_score, {'y_pred': torch.randint(low=0, high=10, size=(128,)), - 'y_true': torch.randint(low=0, high=10, size=(128,))}, id='Accuracy'), + 'y_true': torch.randint(low=0, high=10, size=(128,))}, + id='Accuracy'), pytest.param(AUC(), auc, {'x': torch.arange(10, dtype=torch.float) / 10, - 'y': torch.tensor([0.2, 0.2, 0.2, 0.2, 0.2, - 0.2, 0.3, 0.5, 0.6, 0.7])}, id='AUC'), + 'y': torch.tensor([0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.3, 0.5, 0.6, 0.7])}, + id='AUC'), pytest.param(AveragePrecision(), average_precision_score, - {'y_score': torch.randint(2, size=(128,)), - 'y_true': torch.randint(2, size=(128,))}, id='AveragePrecision'), + {'y_score': torch.randint(2, size=(128,)), 'y_true': torch.randint(2, size=(128,))}, + id='AveragePrecision'), pytest.param(ConfusionMatrix(), confusion_matrix, - {'y_pred': torch.randint(10, size=(128,)), - 'y_true': torch.randint(10, size=(128,))}, id='ConfusionMatrix'), + {'y_pred': torch.randint(10, size=(128,)), 'y_true': torch.randint(10, size=(128,))}, + id='ConfusionMatrix'), pytest.param(F1(average='macro'), partial(f1_score, average='macro'), - {'y_pred': torch.randint(10, size=(128,)), - 'y_true': torch.randint(10, size=(128,))}, id='F1'), + {'y_pred': torch.randint(10, size=(128,)), 'y_true': torch.randint(10, size=(128,))}, + id='F1'), pytest.param(FBeta(beta=0.5, average='macro'), partial(fbeta_score, beta=0.5, average='macro'), - {'y_pred': torch.randint(10, size=(128,)), - 'y_true': torch.randint(10, size=(128,))}, id='FBeta'), + {'y_pred': torch.randint(10, size=(128,)), 'y_true': torch.randint(10, size=(128,))}, + id='FBeta'), pytest.param(Precision(average='macro'), partial(precision_score, average='macro'), - {'y_pred': torch.randint(10, size=(128,)), - 'y_true': torch.randint(10, size=(128,))}, id='Precision'), + {'y_pred': torch.randint(10, size=(128,)), 'y_true': torch.randint(10, size=(128,))}, + id='Precision'), pytest.param(Recall(average='macro'), partial(recall_score, average='macro'), - {'y_pred': torch.randint(10, size=(128,)), - 'y_true': torch.randint(10, size=(128,))}, id='Recall'), + {'y_pred': torch.randint(10, size=(128,)), 'y_true': torch.randint(10, size=(128,))}, + id='Recall'), pytest.param(PrecisionRecallCurve(), xy_only(precision_recall_curve), - {'probas_pred': torch.rand(size=(128,)), - 'y_true': torch.randint(2, size=(128,))}, id='PrecisionRecallCurve'), + {'probas_pred': torch.rand(size=(128,)), 'y_true': torch.randint(2, size=(128,))}, + id='PrecisionRecallCurve'), pytest.param(ROC(), xy_only(roc_curve), - {'y_score': torch.rand(size=(128,)), - 'y_true': torch.randint(2, size=(128,))}, id='ROC'), + {'y_score': torch.rand(size=(128,)), 'y_true': torch.randint(2, size=(128,))}, + id='ROC'), pytest.param(AUROC(), roc_auc_score, - {'y_score': torch.rand(size=(128,)), - 'y_true': torch.randint(2, size=(128,))}, id='AUROC'), + {'y_score': torch.rand(size=(128,)), 'y_true': torch.randint(2, size=(128,))}, + id='AUROC'), ]) def test_sklearn_metric(metric_class, sklearn_func, inputs: dict): numpy_inputs = apply_to_collection(