diff --git a/docs/source/experiment_logging.rst b/docs/source/experiment_logging.rst
deleted file mode 100644
index 4ccad84ef2..0000000000
--- a/docs/source/experiment_logging.rst
+++ /dev/null
@@ -1,242 +0,0 @@
-.. testsetup:: *
-
- from pytorch_lightning.trainer.trainer import Trainer
- from pytorch_lightning.core.lightning import LightningModule
-
-.. _experiment_logging:
-
-Experiment Logging
-==================
-
-Comet.ml
-^^^^^^^^
-
-`Comet.ml `_ is a third-party logger.
-To use :class:`~pytorch_lightning.loggers.CometLogger` as your logger do the following.
-First, install the package:
-
-.. code-block:: bash
-
- pip install comet-ml
-
-Then configure the logger and pass it to the :class:`~pytorch_lightning.trainer.trainer.Trainer`:
-
-.. testcode::
-
- import os
- from pytorch_lightning.loggers import CometLogger
- comet_logger = CometLogger(
- api_key=os.environ.get('COMET_API_KEY'),
- workspace=os.environ.get('COMET_WORKSPACE'), # Optional
- save_dir='.', # Optional
- project_name='default_project', # Optional
- rest_api_key=os.environ.get('COMET_REST_API_KEY'), # Optional
- experiment_name='default' # Optional
- )
- trainer = Trainer(logger=comet_logger)
-
-The :class:`~pytorch_lightning.loggers.CometLogger` is available anywhere except ``__init__`` in your
-:class:`~pytorch_lightning.core.lightning.LightningModule`.
-
-.. testcode::
-
- class MyModule(LightningModule):
- def any_lightning_module_function_or_hook(self):
- some_img = fake_image()
- self.logger.experiment.add_image('generated_images', some_img, 0)
-
-.. seealso::
- :class:`~pytorch_lightning.loggers.CometLogger` docs.
-
-----------------
-
-MLflow
-^^^^^^
-
-`MLflow `_ is a third-party logger.
-To use :class:`~pytorch_lightning.loggers.MLFlowLogger` as your logger do the following.
-First, install the package:
-
-.. code-block:: bash
-
- pip install mlflow
-
-Then configure the logger and pass it to the :class:`~pytorch_lightning.trainer.trainer.Trainer`:
-
-.. testcode::
-
- from pytorch_lightning.loggers import MLFlowLogger
- mlf_logger = MLFlowLogger(
- experiment_name="default",
- tracking_uri="file:./ml-runs"
- )
- trainer = Trainer(logger=mlf_logger)
-
-.. seealso::
- :class:`~pytorch_lightning.loggers.MLFlowLogger` docs.
-
-----------------
-
-Neptune.ai
-^^^^^^^^^^
-
-`Neptune.ai `_ is a third-party logger.
-To use :class:`~pytorch_lightning.loggers.NeptuneLogger` as your logger do the following.
-First, install the package:
-
-.. code-block:: bash
-
- pip install neptune-client
-
-Then configure the logger and pass it to the :class:`~pytorch_lightning.trainer.trainer.Trainer`:
-
-.. testcode::
-
- from pytorch_lightning.loggers import NeptuneLogger
-
- neptune_logger = NeptuneLogger(
- api_key='ANONYMOUS', # replace with your own
- project_name='shared/pytorch-lightning-integration',
- experiment_name='default', # Optional,
- params={'max_epochs': 10}, # Optional,
- tags=['pytorch-lightning', 'mlp'], # Optional,
- )
- trainer = Trainer(logger=neptune_logger)
-
-The :class:`~pytorch_lightning.loggers.NeptuneLogger` is available anywhere except ``__init__`` in your
-:class:`~pytorch_lightning.core.lightning.LightningModule`.
-
-.. testcode::
-
- class MyModule(LightningModule):
- def any_lightning_module_function_or_hook(self):
- some_img = fake_image()
- self.logger.experiment.add_image('generated_images', some_img, 0)
-
-.. seealso::
- :class:`~pytorch_lightning.loggers.NeptuneLogger` docs.
-
-----------------
-
-Tensorboard
-^^^^^^^^^^^
-
-To use `TensorBoard `_ as your logger do the following.
-
-.. testcode::
-
- from pytorch_lightning.loggers import TensorBoardLogger
- logger = TensorBoardLogger('tb_logs', name='my_model')
- trainer = Trainer(logger=logger)
-
-The :class:`~pytorch_lightning.loggers.TensorBoardLogger` is available anywhere except ``__init__`` in your
-:class:`~pytorch_lightning.core.lightning.LightningModule`.
-
-.. testcode::
-
- class MyModule(LightningModule):
- def any_lightning_module_function_or_hook(self):
- some_img = fake_image()
- self.logger.experiment.add_image('generated_images', some_img, 0)
-
-.. seealso::
- :class:`~pytorch_lightning.loggers.TensorBoardLogger` docs.
-
-----------------
-
-Test Tube
-^^^^^^^^^
-
-`Test Tube `_ is a
-`TensorBoard `_ logger but with nicer file structure.
-To use :class:`~pytorch_lightning.loggers.TestTubeLogger` as your logger do the following.
-First, install the package:
-
-.. code-block:: bash
-
- pip install test_tube
-
-Then configure the logger and pass it to the :class:`~pytorch_lightning.trainer.trainer.Trainer`:
-
-.. testcode::
-
- from pytorch_lightning.loggers import TestTubeLogger
- logger = TestTubeLogger('tb_logs', name='my_model')
- trainer = Trainer(logger=logger)
-
-The :class:`~pytorch_lightning.loggers.TestTubeLogger` is available anywhere except ``__init__`` in your
-:class:`~pytorch_lightning.core.lightning.LightningModule`.
-
-.. testcode::
-
- class MyModule(LightningModule):
- def any_lightning_module_function_or_hook(self):
- some_img = fake_image()
- self.logger.experiment.add_image('generated_images', some_img, 0)
-
-.. seealso::
- :class:`~pytorch_lightning.loggers.TestTubeLogger` docs.
-
-----------------
-
-Weights and Biases
-^^^^^^^^^^^^^^^^^^
-
-`Weights and Biases `_ is a third-party logger.
-To use :class:`~pytorch_lightning.loggers.WandbLogger` as your logger do the following.
-First, install the package:
-
-.. code-block:: bash
-
- pip install wandb
-
-Then configure the logger and pass it to the :class:`~pytorch_lightning.trainer.trainer.Trainer`:
-
-.. code-block:: python
-
- from pytorch_lightning.loggers import WandbLogger
- wandb_logger = WandbLogger(offline=True)
- trainer = Trainer(logger=wandb_logger)
-
-The :class:`~pytorch_lightning.loggers.WandbLogger` is available anywhere except ``__init__`` in your
-:class:`~pytorch_lightning.core.lightning.LightningModule`.
-
-.. testcode::
-
- class MyModule(LightningModule):
- def any_lightning_module_function_or_hook(self):
- some_img = fake_image()
- self.logger.experiment.log({
- "generated_images": [wandb.Image(some_img, caption="...")]
- })
-
-.. seealso::
- :class:`~pytorch_lightning.loggers.WandbLogger` docs.
-
-----------------
-
-Multiple Loggers
-^^^^^^^^^^^^^^^^
-
-Lightning supports the use of multiple loggers, just pass a list to the
-:class:`~pytorch_lightning.trainer.trainer.Trainer`.
-
-.. testcode::
-
- from pytorch_lightning.loggers import TensorBoardLogger, TestTubeLogger
- logger1 = TensorBoardLogger('tb_logs', name='my_model')
- logger2 = TestTubeLogger('tb_logs', name='my_model')
- trainer = Trainer(logger=[logger1, logger2])
-
-The loggers are available as a list anywhere except ``__init__`` in your
-:class:`~pytorch_lightning.core.lightning.LightningModule`.
-
-.. testcode::
-
- class MyModule(LightningModule):
- def any_lightning_module_function_or_hook(self):
- some_img = fake_image()
- # Option 1
- self.logger.experiment[0].add_image('generated_images', some_img, 0)
- # Option 2
- self.logger[0].experiment.add_image('generated_images', some_img, 0)
diff --git a/docs/source/experiment_reporting.rst b/docs/source/experiment_reporting.rst
deleted file mode 100644
index 4b6f0bb1ef..0000000000
--- a/docs/source/experiment_reporting.rst
+++ /dev/null
@@ -1,168 +0,0 @@
-.. testsetup:: *
-
- from pytorch_lightning.trainer.trainer import Trainer
-
-.. _experiment_reporting:
-
-Experiment Reporting
-=====================
-
-Lightning supports many different experiment loggers. These loggers allow you to monitor losses, images, text, etc...
-as training progresses. They usually provide a GUI to visualize and can sometimes even snapshot hyperparameters
-used in each experiment.
-
-----------
-
-Control logging frequency
-^^^^^^^^^^^^^^^^^^^^^^^^^
-
-It may slow training down to log every single batch. Trainer has an option to log every k batches instead.
-
-.. testcode::
-
- k = 10
- trainer = Trainer(row_log_interval=k)
-
-----------
-
-Control log writing frequency
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
-Writing to a logger can be expensive. In Lightning you can set the interval at which you
-want to save logs to the filesystem using this trainer flag.
-
-.. testcode::
-
- k = 100
- trainer = Trainer(log_save_interval=k)
-
-Unlike the `row_log_interval`, this argument does not apply to all loggers.
-The example shown here works with :class:`~pytorch_lightning.loggers.tensorboard.TensorBoardLogger`,
-which is the default logger in Lightning.
-
-----------
-
-Log metrics
-^^^^^^^^^^^
-
-To plot metrics into whatever logger you passed in (tensorboard, comet, neptune, etc...)
-
-1. training_epoch_end, validation_epoch_end, test_epoch_end will all log anything in the "log" key of the return dict.
-
-.. testcode::
-
- def training_epoch_end(self, outputs):
- loss = some_loss()
- ...
-
- logs = {'train_loss': loss}
- results = {'log': logs}
- return results
-
- def validation_epoch_end(self, outputs):
- loss = some_loss()
- ...
-
- logs = {'val_loss': loss}
- results = {'log': logs}
- return results
-
- def test_epoch_end(self, outputs):
- loss = some_loss()
- ...
-
- logs = {'test_loss': loss}
- results = {'log': logs}
- return results
-
-2. In addition, you can also use any arbitrary functionality from a particular logger from within your LightningModule.
-For instance, here we log images using tensorboard.
-
-.. testcode::
- :skipif: not TORCHVISION_AVAILABLE
-
- def training_step(self, batch, batch_idx):
- self.generated_imgs = self.decoder.generate()
-
- sample_imgs = self.generated_imgs[:6]
- grid = torchvision.utils.make_grid(sample_imgs)
- self.logger.experiment.add_image('generated_images', grid, 0)
-
- ...
- return results
-
-----------
-
-Modify progress bar
-^^^^^^^^^^^^^^^^^^^
-
-Each return dict from the
-:meth:`~pytorch_lightning.core.lightning.LightningModule.training_step`,
-:meth:`~pytorch_lightning.core.lightning.LightningModule.training_epoch_end`,
-:meth:`~pytorch_lightning.core.lightning.LightningModule.validation_epoch_end` and
-:meth:`~pytorch_lightning.core.lightning.LightningModule.test_epoch_end`
-can also contain a key called `progress_bar`.
-
-Here we show the validation loss in the progress bar:
-
-.. testcode::
-
- def validation_epoch_end(self, outputs):
- loss = some_loss()
- ...
-
- logs = {'val_loss': loss}
- results = {'progress_bar': logs}
- return results
-
-The progress bar by default already includes the training loss and version number of the experiment
-if you are using a logger. These defaults can be customized by overriding the
-:meth:`~pytorch_lightning.core.lightning.LightningModule.get_progress_bar_dict` hook in your module.
-
-
-----------
-
-Configure console logging
-^^^^^^^^^^^^^^^^^^^^^^^^^
-
-Lightning logs useful information about the training process and user warnings to the console.
-You can retrieve the Lightning logger and change it to your liking. For example, increase the logging level
-to see fewer messages like so:
-
-.. code-block:: python
-
- import logging
- logging.getLogger("lightning").setLevel(logging.ERROR)
-
-Read more about custom Python logging `here `_.
-
-
-----------
-
-Snapshot hyperparameters
-^^^^^^^^^^^^^^^^^^^^^^^^
-
-When training a model, it's useful to know what hyperparams went into that model.
-When Lightning creates a checkpoint, it stores a key "hparams" with the hyperparams.
-
-.. code-block:: python
-
- lightning_checkpoint = torch.load(filepath, map_location=lambda storage, loc: storage)
- hyperparams = lightning_checkpoint['hparams']
-
-Some loggers also allow logging the hyperparams used in the experiment. For instance,
-when using the TestTubeLogger or the TensorBoardLogger, all hyperparams will show
-in the `hparams tab `_.
-
-----------
-
-Snapshot code
-^^^^^^^^^^^^^
-
-Loggers also allow you to snapshot a copy of the code used in this experiment.
-For example, TestTubeLogger does this with a flag:
-
-.. testcode::
-
- from pytorch_lightning.loggers import TestTubeLogger
- logger = TestTubeLogger('.', create_git_tag=True)
diff --git a/docs/source/index.rst b/docs/source/index.rst
index d2d41c2768..c683f44a43 100644
--- a/docs/source/index.rst
+++ b/docs/source/index.rst
@@ -37,7 +37,7 @@ PyTorch Lightning Documentation
callbacks
datamodules
- loggers
+ logging
metrics
.. toctree::
@@ -87,8 +87,7 @@ PyTorch Lightning Documentation
slurm
child_modules
debugging
- experiment_logging
- experiment_reporting
+ loggers
early_stopping
fast_training
hooks
diff --git a/docs/source/loggers.rst b/docs/source/loggers.rst
index 93b2e1cdac..0fae0f88ca 100644
--- a/docs/source/loggers.rst
+++ b/docs/source/loggers.rst
@@ -1,211 +1,253 @@
.. testsetup:: *
- from pytorch_lightning.core.lightning import LightningModule
from pytorch_lightning.trainer.trainer import Trainer
- from pytorch_lightning import loggers as pl_loggers
+ from pytorch_lightning.core.lightning import LightningModule
-.. role:: hidden
- :class: hidden-section
-
.. _loggers:
+*******
Loggers
-===========
-Lightning supports the most popular logging frameworks (TensorBoard, Comet, etc...).
-To use a logger, simply pass it into the :class:`~pytorch_lightning.trainer.trainer.Trainer`.
-Lightning uses TensorBoard by default.
+*******
-.. testcode::
-
- from pytorch_lightning import loggers as pl_loggers
-
- tb_logger = pl_loggers.TensorBoardLogger('logs/')
- trainer = Trainer(logger=tb_logger)
-
-Choose from any of the others such as MLflow, Comet, Neptune, WandB, ...
-
-.. testcode::
-
- comet_logger = pl_loggers.CometLogger(save_dir='logs/')
- trainer = Trainer(logger=comet_logger)
-
-To use multiple loggers, simply pass in a ``list`` or ``tuple`` of loggers ...
-
-.. testcode::
-
- tb_logger = pl_loggers.TensorBoardLogger('logs/')
- comet_logger = pl_loggers.CometLogger(save_dir='logs/')
- trainer = Trainer(logger=[tb_logger, comet_logger])
+Lightning supports the most popular logging frameworks (TensorBoard, Comet, etc...). TensorBoard is used by default,
+but you can pass to the :class:`~pytorch_lightning.trainer.trainer.Trainer` any combintation of the following loggers.
.. note::
All loggers log by default to `os.getcwd()`. To change the path without creating a logger set
`Trainer(default_root_dir='/your/path/to/save/checkpoints')`
-----------
+Read more about :ref:`logging` options.
-Logging from a LightningModule
-------------------------------
-Interact with loggers in two ways, automatically and/or manually.
+Comet.ml
+========
-Automatic logging
-^^^^^^^^^^^^^^^^^
-Use the :func:`~~pytorch_lightning.core.lightning.LightningModule.log` method to log from anywhere in a LightningModule.
-
-.. code-block:: python
-
- def training_step(self, batch, batch_idx):
- self.log('my_metric', x)
-
-The :func:`~~pytorch_lightning.core.lightning.LightningModule.log` method has a few options:
-
-- on_step (logs the metric at that step in training)
-- on_epoch (automatically accumulates and logs at the end of the epoch)
-- prog_bar (logs to the progress bar)
-- logger (logs to the logger like Tensorboard)
-
-Depending on where log is called from, Lightning auto-determines the correct mode for you. But of course
-you can override the default behavior by manually setting the flags
-
-.. note:: Setting on_epoch=True will accumulate your logged values over the full training epoch.
-
-.. code-block:: python
-
- def training_step(self, batch, batch_idx):
- self.log('my_loss', loss, on_step=True, on_epoch=True, prog_bar=True, logger=True)
-
-Once your training starts, you can view the logs by using your favorite logger or booting up the Tensorboard logs:
+`Comet.ml `_ is a third-party logger.
+To use :class:`~pytorch_lightning.loggers.CometLogger` as your logger do the following.
+First, install the package:
.. code-block:: bash
- tensorboard --logdir ./lightning_logs
+ pip install comet-ml
-
-Manual logging
-^^^^^^^^^^^^^^
-For certain things like histograms, text, images, etc... you may need to use the logger object directly.
-
-.. code-block:: python
-
- def training_step(...):
- ...
- # the logger you used (in this case tensorboard)
- tensorboard = self.logger.experiment
- tensorboard.add_histogram(...)
- tensorboard.add_figure(...)
-
-----------
-
-Logging from a Callback
------------------------
-To log from a callback, the :func:`~~pytorch_lightning.core.lightning.LightningModule.log`
-method of the LightningModule.
-
-.. code-block:: python
-
- class MyCallback(Callback):
-
- def on_train_epoch_end(self, trainer, pl_module):
- pl_module.log('something', x)
-
-or access the logger object directly
-
-.. code-block:: python
-
- class MyCallback(Callback):
-
- def on_train_epoch_end(self, trainer, pl_module):
- tensorboard = pl_module.logger.experiment
- tensorboard.add_histogram(...)
- tensorboard.add_figure(...)
-
-----------
-
-Make a Custom Logger
---------------------
-
-You can implement your own logger by writing a class that inherits from
-:class:`LightningLoggerBase`. Use the :func:`~pytorch_lightning.loggers.base.rank_zero_only`
-decorator to make sure that only the first process in DDP training logs data.
+Then configure the logger and pass it to the :class:`~pytorch_lightning.trainer.trainer.Trainer`:
.. testcode::
- from pytorch_lightning.utilities import rank_zero_only
- from pytorch_lightning.loggers import LightningLoggerBase
+ import os
+ from pytorch_lightning.loggers import CometLogger
+ comet_logger = CometLogger(
+ api_key=os.environ.get('COMET_API_KEY'),
+ workspace=os.environ.get('COMET_WORKSPACE'), # Optional
+ save_dir='.', # Optional
+ project_name='default_project', # Optional
+ rest_api_key=os.environ.get('COMET_REST_API_KEY'), # Optional
+ experiment_name='default' # Optional
+ )
+ trainer = Trainer(logger=comet_logger)
- class MyLogger(LightningLoggerBase):
+The :class:`~pytorch_lightning.loggers.CometLogger` is available anywhere except ``__init__`` in your
+:class:`~pytorch_lightning.core.lightning.LightningModule`.
- @rank_zero_only
- def log_hyperparams(self, params):
- # params is an argparse.Namespace
- # your code to record hyperparameters goes here
- pass
+.. testcode::
- @rank_zero_only
- def log_metrics(self, metrics, step):
- # metrics is a dictionary of metric names and values
- # your code to record metrics goes here
- pass
+ class MyModule(LightningModule):
+ def any_lightning_module_function_or_hook(self):
+ some_img = fake_image()
+ self.logger.experiment.add_image('generated_images', some_img, 0)
- def save(self):
- # Optional. Any code necessary to save logger data goes here
- # If you implement this, remember to call `super().save()`
- # at the start of the method (important for aggregation of metrics)
- super().save()
+.. seealso::
+ :class:`~pytorch_lightning.loggers.CometLogger` docs.
- @rank_zero_only
- def finalize(self, status):
- # Optional. Any code that needs to be run after training
- # finishes goes here
- pass
+----------------
-If you write a logger that may be useful to others, please send
-a pull request to add it to Lightning!
+MLflow
+======
-----------
+`MLflow `_ is a third-party logger.
+To use :class:`~pytorch_lightning.loggers.MLFlowLogger` as your logger do the following.
+First, install the package:
-Supported Loggers
------------------
-The following are loggers we support
+.. code-block:: bash
-Comet
-^^^^^
+ pip install mlflow
-.. autoclass:: pytorch_lightning.loggers.comet.CometLogger
- :noindex:
+Then configure the logger and pass it to the :class:`~pytorch_lightning.trainer.trainer.Trainer`:
-CSVLogger
-^^^^^^^^^
+.. testcode::
-.. autoclass:: pytorch_lightning.loggers.csv_logs.CSVLogger
- :noindex:
+ from pytorch_lightning.loggers import MLFlowLogger
+ mlf_logger = MLFlowLogger(
+ experiment_name="default",
+ tracking_uri="file:./ml-runs"
+ )
+ trainer = Trainer(logger=mlf_logger)
-MLFlow
-^^^^^^
+.. seealso::
+ :class:`~pytorch_lightning.loggers.MLFlowLogger` docs.
-.. autoclass:: pytorch_lightning.loggers.mlflow.MLFlowLogger
- :noindex:
+----------------
-Neptune
-^^^^^^^
+Neptune.ai
+==========
-.. autoclass:: pytorch_lightning.loggers.neptune.NeptuneLogger
- :noindex:
+`Neptune.ai `_ is a third-party logger.
+To use :class:`~pytorch_lightning.loggers.NeptuneLogger` as your logger do the following.
+First, install the package:
+
+.. code-block:: bash
+
+ pip install neptune-client
+
+Then configure the logger and pass it to the :class:`~pytorch_lightning.trainer.trainer.Trainer`:
+
+.. testcode::
+
+ from pytorch_lightning.loggers import NeptuneLogger
+
+ neptune_logger = NeptuneLogger(
+ api_key='ANONYMOUS', # replace with your own
+ project_name='shared/pytorch-lightning-integration',
+ experiment_name='default', # Optional,
+ params={'max_epochs': 10}, # Optional,
+ tags=['pytorch-lightning', 'mlp'], # Optional,
+ )
+ trainer = Trainer(logger=neptune_logger)
+
+The :class:`~pytorch_lightning.loggers.NeptuneLogger` is available anywhere except ``__init__`` in your
+:class:`~pytorch_lightning.core.lightning.LightningModule`.
+
+.. testcode::
+
+ class MyModule(LightningModule):
+ def any_lightning_module_function_or_hook(self):
+ some_img = fake_image()
+ self.logger.experiment.add_image('generated_images', some_img, 0)
+
+.. seealso::
+ :class:`~pytorch_lightning.loggers.NeptuneLogger` docs.
+
+----------------
Tensorboard
-^^^^^^^^^^^^
+===========
-.. autoclass:: pytorch_lightning.loggers.tensorboard.TensorBoardLogger
- :noindex:
+To use `TensorBoard `_ as your logger do the following.
-Test-tube
-^^^^^^^^^
+.. testcode::
-.. autoclass:: pytorch_lightning.loggers.test_tube.TestTubeLogger
- :noindex:
+ from pytorch_lightning.loggers import TensorBoardLogger
+ logger = TensorBoardLogger('tb_logs', name='my_model')
+ trainer = Trainer(logger=logger)
+
+The :class:`~pytorch_lightning.loggers.TensorBoardLogger` is available anywhere except ``__init__`` in your
+:class:`~pytorch_lightning.core.lightning.LightningModule`.
+
+.. testcode::
+
+ class MyModule(LightningModule):
+ def any_lightning_module_function_or_hook(self):
+ some_img = fake_image()
+ self.logger.experiment.add_image('generated_images', some_img, 0)
+
+.. seealso::
+ :class:`~pytorch_lightning.loggers.TensorBoardLogger` docs.
+
+----------------
+
+Test Tube
+=========
+
+`Test Tube `_ is a
+`TensorBoard `_ logger but with nicer file structure.
+To use :class:`~pytorch_lightning.loggers.TestTubeLogger` as your logger do the following.
+First, install the package:
+
+.. code-block:: bash
+
+ pip install test_tube
+
+Then configure the logger and pass it to the :class:`~pytorch_lightning.trainer.trainer.Trainer`:
+
+.. testcode::
+
+ from pytorch_lightning.loggers import TestTubeLogger
+ logger = TestTubeLogger('tb_logs', name='my_model')
+ trainer = Trainer(logger=logger)
+
+The :class:`~pytorch_lightning.loggers.TestTubeLogger` is available anywhere except ``__init__`` in your
+:class:`~pytorch_lightning.core.lightning.LightningModule`.
+
+.. testcode::
+
+ class MyModule(LightningModule):
+ def any_lightning_module_function_or_hook(self):
+ some_img = fake_image()
+ self.logger.experiment.add_image('generated_images', some_img, 0)
+
+.. seealso::
+ :class:`~pytorch_lightning.loggers.TestTubeLogger` docs.
+
+----------------
Weights and Biases
-^^^^^^^^^^^^^^^^^^
+==================
-.. autoclass:: pytorch_lightning.loggers.wandb.WandbLogger
- :noindex:
+`Weights and Biases `_ is a third-party logger.
+To use :class:`~pytorch_lightning.loggers.WandbLogger` as your logger do the following.
+First, install the package:
+
+.. code-block:: bash
+
+ pip install wandb
+
+Then configure the logger and pass it to the :class:`~pytorch_lightning.trainer.trainer.Trainer`:
+
+.. code-block:: python
+
+ from pytorch_lightning.loggers import WandbLogger
+ wandb_logger = WandbLogger(offline=True)
+ trainer = Trainer(logger=wandb_logger)
+
+The :class:`~pytorch_lightning.loggers.WandbLogger` is available anywhere except ``__init__`` in your
+:class:`~pytorch_lightning.core.lightning.LightningModule`.
+
+.. testcode::
+
+ class MyModule(LightningModule):
+ def any_lightning_module_function_or_hook(self):
+ some_img = fake_image()
+ self.logger.experiment.log({
+ "generated_images": [wandb.Image(some_img, caption="...")]
+ })
+
+.. seealso::
+ :class:`~pytorch_lightning.loggers.WandbLogger` docs.
+
+----------------
+
+Multiple Loggers
+================
+
+Lightning supports the use of multiple loggers, just pass a list to the
+:class:`~pytorch_lightning.trainer.trainer.Trainer`.
+
+.. testcode::
+
+ from pytorch_lightning.loggers import TensorBoardLogger, TestTubeLogger
+ logger1 = TensorBoardLogger('tb_logs', name='my_model')
+ logger2 = TestTubeLogger('tb_logs', name='my_model')
+ trainer = Trainer(logger=[logger1, logger2])
+
+The loggers are available as a list anywhere except ``__init__`` in your
+:class:`~pytorch_lightning.core.lightning.LightningModule`.
+
+.. testcode::
+
+ class MyModule(LightningModule):
+ def any_lightning_module_function_or_hook(self):
+ some_img = fake_image()
+ # Option 1
+ self.logger.experiment[0].add_image('generated_images', some_img, 0)
+ # Option 2
+ self.logger[0].experiment.add_image('generated_images', some_img, 0)
diff --git a/docs/source/logging.rst b/docs/source/logging.rst
new file mode 100644
index 0000000000..8dff05a4b0
--- /dev/null
+++ b/docs/source/logging.rst
@@ -0,0 +1,362 @@
+.. testsetup:: *
+
+ from pytorch_lightning.core.lightning import LightningModule
+ from pytorch_lightning.trainer.trainer import Trainer
+ from pytorch_lightning import loggers as pl_loggers
+
+.. role:: hidden
+ :class: hidden-section
+
+.. _logging:
+
+
+#######
+Logging
+#######
+
+Lightning supports the most popular logging frameworks (TensorBoard, Comet, etc...).
+To use a logger, simply pass it into the :class:`~pytorch_lightning.trainer.trainer.Trainer`.
+Lightning uses TensorBoard by default.
+
+.. testcode::
+
+ from pytorch_lightning import loggers as pl_loggers
+
+ tb_logger = pl_loggers.TensorBoardLogger('logs/')
+ trainer = Trainer(logger=tb_logger)
+
+Choose from any of the others such as MLflow, Comet, Neptune, WandB, ...
+
+.. testcode::
+
+ comet_logger = pl_loggers.CometLogger(save_dir='logs/')
+ trainer = Trainer(logger=comet_logger)
+
+To use multiple loggers, simply pass in a ``list`` or ``tuple`` of loggers ...
+
+.. testcode::
+
+ tb_logger = pl_loggers.TensorBoardLogger('logs/')
+ comet_logger = pl_loggers.CometLogger(save_dir='logs/')
+ trainer = Trainer(logger=[tb_logger, comet_logger])
+
+.. note::
+
+ By default, lightning logs every 50 steps. Use Trainer flags to :ref:`logging_frequency`.
+
+.. note::
+
+ All loggers log by default to `os.getcwd()`. To change the path without creating a logger set
+ `Trainer(default_root_dir='/your/path/to/save/checkpoints')`
+
+----------
+
+******************************
+Logging from a LightningModule
+******************************
+
+Lightning offers automatic log functionalities for logging scalars, or manual logging for anything else.
+
+Automatic logging
+=================
+Use the :func:`~~pytorch_lightning.core.lightning.LightningModule.log` method to log from anywhere in a :class:`~pytorch_lightning.core.LightningModule`.
+
+.. code-block:: python
+
+ def training_step(self, batch, batch_idx):
+ self.log('my_metric', x)
+
+Depending on where log is called from, Lightning auto-determines the correct logging mode for you.\
+But of course you can override the default behavior by manually setting the :func:`~~pytorch_lightning.core.lightning.LightningModule.log` parameters.
+
+.. code-block:: python
+
+ def training_step(self, batch, batch_idx):
+ self.log('my_loss', loss, on_step=True, on_epoch=True, prog_bar=True, logger=True)
+
+The :func:`~~pytorch_lightning.core.lightning.LightningModule.log` method has a few options:
+
+* on_step: Logs the metric at the current step. Defaults to True in :func:`~~pytorch_lightning.core.lightning.LightningModule.training_step`, and :func:`~pytorch_lightning.core.lightning.LightningModule.training_step_end`.
+
+* on_epoch: Automatically accumulates and logs at the end of the epoch. Defaults to True anywhere in validation or test loops, and in :func:`~~pytorch_lightning.core.lightning.LightningModule.training_epoch_end`.
+
+* prog_bar: Logs to the progress bar.
+
+* logger: Logs to the logger like Tensorboard, or any other custom logger passed to the :class:`~pytorch_lightning.trainer.trainer.Trainer`.
+
+
+.. note:: Setting on_epoch=True will accumulate your logged values over the full training epoch.
+
+
+Manual logging
+==============
+If you want to log anything that is not a scalar, like histograms, text, images, etc... you may need to use the logger object directly.
+
+.. code-block:: python
+
+ def training_step(...):
+ ...
+ # the logger you used (in this case tensorboard)
+ tensorboard = self.logger.experiment
+ tensorboard.add_image()
+ tensorboard.add_histogram(...)
+ tensorboard.add_figure(...)
+
+
+Access your logs
+================
+Once your training starts, you can view the logs by using your favorite logger or booting up the Tensorboard logs:
+
+.. code-block:: bash
+
+ tensorboard --logdir ./lightning_logs
+
+----------
+
+***********************
+Logging from a Callback
+***********************
+To log from a callback, use the :func:`~~pytorch_lightning.core.lightning.LightningModule.log`
+method of the :class:`~pytorch_lightning.core.LightningModule`.
+
+.. code-block:: python
+
+ class MyCallback(Callback):
+
+ def on_train_epoch_end(self, trainer, pl_module):
+ pl_module.log('something', x)
+
+or access the logger object directly for manual logging
+
+.. code-block:: python
+
+ class MyCallback(Callback):
+
+ def on_train_epoch_end(self, trainer, pl_module):
+ tensorboard = pl_module.logger.experiment
+ tensorboard.add_histogram(...)
+ tensorboard.add_figure(...)
+
+----------
+
+********************
+Make a custom logger
+********************
+
+You can implement your own logger by writing a class that inherits from
+:class:`LightningLoggerBase`. Use the :func:`~pytorch_lightning.loggers.base.rank_zero_only`
+decorator to make sure that only the first process in DDP training logs data.
+
+.. testcode::
+
+ from pytorch_lightning.utilities import rank_zero_only
+ from pytorch_lightning.loggers import LightningLoggerBase
+
+ class MyLogger(LightningLoggerBase):
+
+ def name(self):
+ return 'MyLogger'
+
+ def experiment(self):
+ # Return the experiment object associated with this logger.
+ pass
+
+ def version(self):
+ # Return the experiment version, int or str.
+ return '0.1'
+
+ @rank_zero_only
+ def log_hyperparams(self, params):
+ # params is an argparse.Namespace
+ # your code to record hyperparameters goes here
+ pass
+
+ @rank_zero_only
+ def log_metrics(self, metrics, step):
+ # metrics is a dictionary of metric names and values
+ # your code to record metrics goes here
+ pass
+
+ def save(self):
+ # Optional. Any code necessary to save logger data goes here
+ # If you implement this, remember to call `super().save()`
+ # at the start of the method (important for aggregation of metrics)
+ super().save()
+
+ @rank_zero_only
+ def finalize(self, status):
+ # Optional. Any code that needs to be run after training
+ # finishes goes here
+ pass
+
+If you write a logger that may be useful to others, please send
+a pull request to add it to Lightning!
+
+----------
+
+.. _logging_frequency:
+
+
+*************************
+Control logging frequency
+*************************
+
+Logging frequency
+=================
+
+It may slow training down to log every single batch. By default, Lightning logs every 50 rows, or 50 training steps.
+To change this behaviour, set the `log_every_n_steps` :class:`~pytorch_lightning.trainer.trainer.Trainer` flag.
+
+.. testcode::
+
+ k = 10
+ trainer = Trainer(log_every_n_steps=k)
+
+
+
+Log writing frequency
+=====================
+
+Writing to a logger can be expensive, so by default Lightning write logs to disc or to the given logger every 100 training steps.
+To change this behaviour, set the interval at which you wish to flush logs to the filesystem using `log_every_n_steps` :class:`~pytorch_lightning.trainer.trainer.Trainer` flag.
+
+.. testcode::
+
+ k = 100
+ trainer = Trainer(flush_logs_every_n_steps=k)
+
+Unlike the `log_every_n_steps`, this argument does not apply to all loggers.
+The example shown here works with :class:`~pytorch_lightning.loggers.tensorboard.TensorBoardLogger`,
+which is the default logger in Lightning.
+
+----------
+
+************
+Progress Bar
+************
+You can add any metric to the progress bar using :func:`~~pytorch_lightning.core.lightning.LightningModule.log`
+method, setting `prog_bar=True`.
+
+
+.. code-block:: python
+
+ def training_step(self, batch, batch_idx):
+ self.log('my_loss', loss, prog_bar=True)
+
+
+Modifying the progress bar
+==========================
+
+The progress bar by default already includes the training loss and version number of the experiment
+if you are using a logger. These defaults can be customized by overriding the
+:func:`~pytorch_lightning.core.lightning.LightningModule.get_progress_bar_dict` hook in your module.
+
+.. code-block:: python
+
+ def get_progress_bar_dict(self):
+ # don't show the version number
+ items = super().get_progress_bar_dict()
+ items.pop("v_num", None)
+ return items
+
+
+----------
+
+
+*************************
+Configure console logging
+*************************
+
+Lightning logs useful information about the training process and user warnings to the console.
+You can retrieve the Lightning logger and change it to your liking. For example, increase the logging level
+to see fewer messages like so:
+
+.. code-block:: python
+
+ import logging
+ logging.getLogger("lightning").setLevel(logging.ERROR)
+
+Read more about custom Python logging `here `_.
+
+
+----------
+
+***********************
+Logging hyperparameters
+***********************
+
+When training a model, it's useful to know what hyperparams went into that model.
+When Lightning creates a checkpoint, it stores a key "hparams" with the hyperparams.
+
+.. code-block:: python
+
+ lightning_checkpoint = torch.load(filepath, map_location=lambda storage, loc: storage)
+ hyperparams = lightning_checkpoint['hparams']
+
+Some loggers also allow logging the hyperparams used in the experiment. For instance,
+when using the TestTubeLogger or the TensorBoardLogger, all hyperparams will show
+in the `hparams tab `_.
+
+----------
+
+*************
+Snapshot code
+*************
+
+Loggers also allow you to snapshot a copy of the code used in this experiment.
+For example, TestTubeLogger does this with a flag:
+
+.. testcode::
+
+ from pytorch_lightning.loggers import TestTubeLogger
+ logger = TestTubeLogger('.', create_git_tag=True)
+
+----------
+
+*****************
+Supported Loggers
+*****************
+
+The following are loggers we support
+
+Comet
+=====
+
+.. autoclass:: pytorch_lightning.loggers.comet.CometLogger
+ :noindex:
+
+CSVLogger
+=========
+
+.. autoclass:: pytorch_lightning.loggers.csv_logs.CSVLogger
+ :noindex:
+
+MLFlow
+======
+
+.. autoclass:: pytorch_lightning.loggers.mlflow.MLFlowLogger
+ :noindex:
+
+Neptune
+=======
+
+.. autoclass:: pytorch_lightning.loggers.neptune.NeptuneLogger
+ :noindex:
+
+Tensorboard
+============
+
+.. autoclass:: pytorch_lightning.loggers.tensorboard.TensorBoardLogger
+ :noindex:
+
+Test-tube
+=========
+
+.. autoclass:: pytorch_lightning.loggers.test_tube.TestTubeLogger
+ :noindex:
+
+Weights and Biases
+==================
+
+.. autoclass:: pytorch_lightning.loggers.wandb.WandbLogger
+ :noindex:
diff --git a/pytorch_lightning/trainer/__init__.py b/pytorch_lightning/trainer/__init__.py
index ca723709fb..f29a68e9f4 100644
--- a/pytorch_lightning/trainer/__init__.py
+++ b/pytorch_lightning/trainer/__init__.py
@@ -620,7 +620,7 @@ Writes logs to disk this often.
trainer = Trainer(flush_logs_every_n_steps=100)
See Also:
- - :ref:`Experiment Reporting `
+ - :ref:`logging`
logger
^^^^^^
@@ -955,7 +955,7 @@ How often to add logging rows (does not write to disk)
trainer = Trainer(log_every_n_steps=50)
See Also:
- - :ref:`Experiment Reporting `
+ - :ref:`logging`
sync_batchnorm