Standalone Lite: Single Device TPU Strategy (#14663)

Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com>
This commit is contained in:
Adrian Wälchli 2022-09-14 16:22:07 +02:00 committed by GitHub
parent 48e783dd0d
commit 32cb774a5c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 62 additions and 1 deletions

View File

@ -14,6 +14,7 @@
from lightning_lite.strategies.parallel import ParallelStrategy # noqa: F401
from lightning_lite.strategies.registry import _call_register_strategies, _StrategyRegistry
from lightning_lite.strategies.single_device import SingleDeviceStrategy # noqa: F401
from lightning_lite.strategies.single_tpu import SingleTPUStrategy # noqa: F401
from lightning_lite.strategies.strategy import Strategy # noqa: F401
STRATEGY_REGISTRY = _StrategyRegistry()

View File

@ -0,0 +1,58 @@
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, Optional
from lightning_lite.accelerators import Accelerator
from lightning_lite.plugins.io.checkpoint_plugin import CheckpointIO
from lightning_lite.plugins.io.xla_plugin import XLACheckpointIO
from lightning_lite.plugins.precision import Precision
from lightning_lite.strategies.single_device import SingleDeviceStrategy
class SingleTPUStrategy(SingleDeviceStrategy):
"""Strategy for training on a single TPU device."""
def __init__(
self,
device: int,
accelerator: Optional[Accelerator] = None,
checkpoint_io: Optional[CheckpointIO] = None,
precision_plugin: Optional[Precision] = None,
):
import torch_xla.core.xla_model as xm
super().__init__(
accelerator=accelerator,
device=xm.xla_device(device),
checkpoint_io=checkpoint_io,
precision_plugin=precision_plugin,
)
@property
def checkpoint_io(self) -> CheckpointIO:
if self._checkpoint_io is None:
self._checkpoint_io = XLACheckpointIO()
return self._checkpoint_io
@checkpoint_io.setter
def checkpoint_io(self, io: Optional[CheckpointIO]) -> None:
self._checkpoint_io = io
@property
def is_distributed(self) -> bool:
return False
@classmethod
def register_strategies(cls, strategy_registry: Dict) -> None:
strategy_registry.register("single_tpu", cls, description=f"{cls.__class__.__name__}")

View File

@ -41,4 +41,6 @@ def test_strategy_registry_with_new_strategy():
def test_available_strategies_in_registry():
assert STRATEGY_REGISTRY.available_strategies() == []
assert STRATEGY_REGISTRY.available_strategies() == [
"single_tpu",
]