Standalone Lite: Single Device TPU Strategy (#14663)
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com>
This commit is contained in:
parent
48e783dd0d
commit
32cb774a5c
|
@ -14,6 +14,7 @@
|
|||
from lightning_lite.strategies.parallel import ParallelStrategy # noqa: F401
|
||||
from lightning_lite.strategies.registry import _call_register_strategies, _StrategyRegistry
|
||||
from lightning_lite.strategies.single_device import SingleDeviceStrategy # noqa: F401
|
||||
from lightning_lite.strategies.single_tpu import SingleTPUStrategy # noqa: F401
|
||||
from lightning_lite.strategies.strategy import Strategy # noqa: F401
|
||||
|
||||
STRATEGY_REGISTRY = _StrategyRegistry()
|
||||
|
|
|
@ -0,0 +1,58 @@
|
|||
# Copyright The PyTorch Lightning team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from typing import Dict, Optional
|
||||
|
||||
from lightning_lite.accelerators import Accelerator
|
||||
from lightning_lite.plugins.io.checkpoint_plugin import CheckpointIO
|
||||
from lightning_lite.plugins.io.xla_plugin import XLACheckpointIO
|
||||
from lightning_lite.plugins.precision import Precision
|
||||
from lightning_lite.strategies.single_device import SingleDeviceStrategy
|
||||
|
||||
|
||||
class SingleTPUStrategy(SingleDeviceStrategy):
|
||||
"""Strategy for training on a single TPU device."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
device: int,
|
||||
accelerator: Optional[Accelerator] = None,
|
||||
checkpoint_io: Optional[CheckpointIO] = None,
|
||||
precision_plugin: Optional[Precision] = None,
|
||||
):
|
||||
import torch_xla.core.xla_model as xm
|
||||
|
||||
super().__init__(
|
||||
accelerator=accelerator,
|
||||
device=xm.xla_device(device),
|
||||
checkpoint_io=checkpoint_io,
|
||||
precision_plugin=precision_plugin,
|
||||
)
|
||||
|
||||
@property
|
||||
def checkpoint_io(self) -> CheckpointIO:
|
||||
if self._checkpoint_io is None:
|
||||
self._checkpoint_io = XLACheckpointIO()
|
||||
return self._checkpoint_io
|
||||
|
||||
@checkpoint_io.setter
|
||||
def checkpoint_io(self, io: Optional[CheckpointIO]) -> None:
|
||||
self._checkpoint_io = io
|
||||
|
||||
@property
|
||||
def is_distributed(self) -> bool:
|
||||
return False
|
||||
|
||||
@classmethod
|
||||
def register_strategies(cls, strategy_registry: Dict) -> None:
|
||||
strategy_registry.register("single_tpu", cls, description=f"{cls.__class__.__name__}")
|
|
@ -41,4 +41,6 @@ def test_strategy_registry_with_new_strategy():
|
|||
|
||||
|
||||
def test_available_strategies_in_registry():
|
||||
assert STRATEGY_REGISTRY.available_strategies() == []
|
||||
assert STRATEGY_REGISTRY.available_strategies() == [
|
||||
"single_tpu",
|
||||
]
|
||||
|
|
Loading…
Reference in New Issue