fix incomplete RunningMean (#1309)
* fix RunningMean
* changelog
* fix none
* Update supporters.py
just needed to multiply by zero for init
* Revert "Update supporters.py"
This reverts commit 7e0da6c6
* fix NaN
* formatting
Co-authored-by: William Falcon <waf2107@columbia.edu>
This commit is contained in:
parent
b7de42f70d
commit
31017120fd
|
@ -39,6 +39,7 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).
|
||||||
- Fixed a bug to ensure lightning checkpoints to be backward compatible ([#1132](https://github.com/PyTorchLightning/pytorch-lightning/pull/1132))
|
- Fixed a bug to ensure lightning checkpoints to be backward compatible ([#1132](https://github.com/PyTorchLightning/pytorch-lightning/pull/1132))
|
||||||
- Fixed all warnings and errors in the docs build process ([#1191](https://github.com/PyTorchLightning/pytorch-lightning/pull/1191))
|
- Fixed all warnings and errors in the docs build process ([#1191](https://github.com/PyTorchLightning/pytorch-lightning/pull/1191))
|
||||||
- Fixed an issue where `val_percent_check=0` would not disable validation ([#1251](https://github.com/PyTorchLightning/pytorch-lightning/pull/1251))
|
- Fixed an issue where `val_percent_check=0` would not disable validation ([#1251](https://github.com/PyTorchLightning/pytorch-lightning/pull/1251))
|
||||||
|
- Fixed average of incomplete `TensorRunningMean` ([#1309](https://github.com/PyTorchLightning/pytorch-lightning/pull/1309))
|
||||||
|
|
||||||
## [0.7.1] - 2020-03-07
|
## [0.7.1] - 2020-03-07
|
||||||
|
|
||||||
|
|
|
@ -1525,9 +1525,10 @@ class LightningModule(ABC, GradInformation, ModelIO, ModelHooks):
|
||||||
Dictionary with the items to be displayed in the progress bar.
|
Dictionary with the items to be displayed in the progress bar.
|
||||||
"""
|
"""
|
||||||
# call .item() only once but store elements without graphs
|
# call .item() only once but store elements without graphs
|
||||||
running_training_loss = self.trainer.running_loss.mean().cpu().item()
|
running_train_loss = self.trainer.running_loss.mean()
|
||||||
|
avg_training_loss = running_train_loss.cpu().item() if running_train_loss is not None else float('NaN')
|
||||||
tqdm_dict = {
|
tqdm_dict = {
|
||||||
'loss': '{:.3f}'.format(running_training_loss)
|
'loss': '{:.3f}'.format(avg_training_loss)
|
||||||
}
|
}
|
||||||
|
|
||||||
if self.trainer.truncated_bptt_steps is not None:
|
if self.trainer.truncated_bptt_steps is not None:
|
||||||
|
|
|
@ -0,0 +1,58 @@
|
||||||
|
import torch
|
||||||
|
|
||||||
|
|
||||||
|
class TensorRunningMean(object):
|
||||||
|
"""
|
||||||
|
Tracks a running mean without graph references.
|
||||||
|
Round robbin for the mean
|
||||||
|
|
||||||
|
Examples:
|
||||||
|
>>> accum = TensorRunningMean(5)
|
||||||
|
>>> accum.last(), accum.mean()
|
||||||
|
(None, None)
|
||||||
|
>>> accum.append(torch.tensor(1.5))
|
||||||
|
>>> accum.last(), accum.mean()
|
||||||
|
(tensor(1.5000), tensor(1.5000))
|
||||||
|
>>> accum.append(torch.tensor(2.5))
|
||||||
|
>>> accum.last(), accum.mean()
|
||||||
|
(tensor(2.5000), tensor(2.))
|
||||||
|
>>> accum.reset()
|
||||||
|
>>> _= [accum.append(torch.tensor(i)) for i in range(13)]
|
||||||
|
>>> accum.last(), accum.mean()
|
||||||
|
(tensor(12.), tensor(10.))
|
||||||
|
"""
|
||||||
|
def __init__(self, window_length: int):
|
||||||
|
self.window_length = window_length
|
||||||
|
self.memory = torch.Tensor(self.window_length)
|
||||||
|
self.current_idx: int = 0
|
||||||
|
self.last_idx: int = None
|
||||||
|
self.rotated: bool = False
|
||||||
|
|
||||||
|
def reset(self) -> None:
|
||||||
|
self = TensorRunningMean(self.window_length)
|
||||||
|
|
||||||
|
def last(self):
|
||||||
|
if self.last_idx is not None:
|
||||||
|
return self.memory[self.last_idx]
|
||||||
|
|
||||||
|
def append(self, x):
|
||||||
|
# map proper type for memory if they don't match
|
||||||
|
if self.memory.type() != x.type():
|
||||||
|
self.memory.type_as(x)
|
||||||
|
|
||||||
|
# store without grads
|
||||||
|
with torch.no_grad():
|
||||||
|
self.memory[self.current_idx] = x
|
||||||
|
self.last_idx = self.current_idx
|
||||||
|
|
||||||
|
# increase index
|
||||||
|
self.current_idx += 1
|
||||||
|
|
||||||
|
# reset index when hit limit of tensor
|
||||||
|
self.current_idx = self.current_idx % self.window_length
|
||||||
|
if self.current_idx == 0:
|
||||||
|
self.rotated = True
|
||||||
|
|
||||||
|
def mean(self):
|
||||||
|
if self.last_idx is not None:
|
||||||
|
return self.memory.mean() if self.rotated else self.memory[:self.current_idx].mean()
|
|
@ -1,39 +0,0 @@
|
||||||
import torch
|
|
||||||
|
|
||||||
|
|
||||||
class TensorRunningMean(object):
|
|
||||||
"""
|
|
||||||
Tracks a running mean without graph references.
|
|
||||||
Round robbin for the mean
|
|
||||||
"""
|
|
||||||
def __init__(self, window_length):
|
|
||||||
self.window_length = window_length
|
|
||||||
self.reset()
|
|
||||||
self.last_idx = 0
|
|
||||||
|
|
||||||
def reset(self):
|
|
||||||
self.memory = torch.Tensor(self.window_length)
|
|
||||||
self.current_idx = 0
|
|
||||||
|
|
||||||
def last(self):
|
|
||||||
return self.memory[self.last_idx]
|
|
||||||
|
|
||||||
def append(self, x):
|
|
||||||
# map proper type for memory if they don't match
|
|
||||||
if self.memory.type() != x.type():
|
|
||||||
self.memory.type_as(x)
|
|
||||||
|
|
||||||
# store without grads
|
|
||||||
with torch.no_grad():
|
|
||||||
self.memory[self.current_idx] = x
|
|
||||||
self.last_idx = self.current_idx
|
|
||||||
|
|
||||||
# increase index
|
|
||||||
self.current_idx += 1
|
|
||||||
|
|
||||||
# reset index when hit limit of tensor
|
|
||||||
if self.current_idx >= self.window_length:
|
|
||||||
self.current_idx = 0
|
|
||||||
|
|
||||||
def mean(self):
|
|
||||||
return self.memory.mean()
|
|
|
@ -34,7 +34,7 @@ from pytorch_lightning.trainer.training_io import TrainerIOMixin
|
||||||
from pytorch_lightning.trainer.training_loop import TrainerTrainLoopMixin
|
from pytorch_lightning.trainer.training_loop import TrainerTrainLoopMixin
|
||||||
from pytorch_lightning.trainer.training_tricks import TrainerTrainingTricksMixin
|
from pytorch_lightning.trainer.training_tricks import TrainerTrainingTricksMixin
|
||||||
from pytorch_lightning.utilities.debugging import MisconfigurationException
|
from pytorch_lightning.utilities.debugging import MisconfigurationException
|
||||||
from pytorch_lightning.trainer.supporting_classes import TensorRunningMean
|
from pytorch_lightning.trainer.supporters import TensorRunningMean
|
||||||
|
|
||||||
try:
|
try:
|
||||||
from apex import amp
|
from apex import amp
|
||||||
|
|
|
@ -146,7 +146,7 @@ from pytorch_lightning.callbacks.base import Callback
|
||||||
from pytorch_lightning.core.lightning import LightningModule
|
from pytorch_lightning.core.lightning import LightningModule
|
||||||
from pytorch_lightning.loggers import LightningLoggerBase
|
from pytorch_lightning.loggers import LightningLoggerBase
|
||||||
from pytorch_lightning.utilities.debugging import MisconfigurationException
|
from pytorch_lightning.utilities.debugging import MisconfigurationException
|
||||||
from pytorch_lightning.trainer.supporting_classes import TensorRunningMean
|
from pytorch_lightning.trainer.supporters import TensorRunningMean
|
||||||
|
|
||||||
try:
|
try:
|
||||||
from apex import amp
|
from apex import amp
|
||||||
|
|
|
@ -48,7 +48,7 @@ def info_system():
|
||||||
|
|
||||||
def info_cuda():
|
def info_cuda():
|
||||||
return {
|
return {
|
||||||
'GPU': set([torch.cuda.get_device_name(i) for i in range(torch.cuda.device_count())]),
|
'GPU': [torch.cuda.get_device_name(i) for i in range(torch.cuda.device_count())],
|
||||||
# 'nvidia_driver': get_nvidia_driver_version(run_lambda),
|
# 'nvidia_driver': get_nvidia_driver_version(run_lambda),
|
||||||
'available': torch.cuda.is_available(),
|
'available': torch.cuda.is_available(),
|
||||||
'version': torch.version.cuda,
|
'version': torch.version.cuda,
|
||||||
|
|
Loading…
Reference in New Issue