Add `RichModelSummary` callback (#9546)
This commit is contained in:
parent
11c93d903d
commit
2ec39e275e
|
@ -136,6 +136,9 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).
|
|||
- Added `PL_RECONCILE_PROCESS` environment variable to enable process reconciliation regardless of cluster environment settings ([#9389](https://github.com/PyTorchLightning/pytorch-lightning/pull/9389))
|
||||
|
||||
|
||||
- Added `RichModelSummary` callback ([#9546](https://github.com/PyTorchLightning/pytorch-lightning/pull/9546))
|
||||
|
||||
|
||||
### Changed
|
||||
|
||||
- `pytorch_lightning.loggers.neptune.NeptuneLogger` is now consistent with new [neptune-client](https://github.com/neptune-ai/neptune-client) API ([#6867](https://github.com/PyTorchLightning/pytorch-lightning/pull/6867)).
|
||||
|
|
|
@ -106,8 +106,10 @@ Lightning has a few built-in callbacks.
|
|||
LearningRateMonitor
|
||||
ModelCheckpoint
|
||||
ModelPruning
|
||||
ModelSummary
|
||||
ProgressBar
|
||||
ProgressBarBase
|
||||
RichModelSummary
|
||||
RichProgressBar
|
||||
QuantizationAwareTraining
|
||||
StochasticWeightAveraging
|
||||
|
|
|
@ -63,6 +63,7 @@ ignore_errors = "True"
|
|||
module = [
|
||||
"pytorch_lightning.callbacks.model_summary",
|
||||
"pytorch_lightning.callbacks.pruning",
|
||||
"pytorch_lightning.callbacks.rich_model_summary",
|
||||
"pytorch_lightning.loops.optimization.*",
|
||||
"pytorch_lightning.loops.evaluation_loop",
|
||||
"pytorch_lightning.trainer.connectors.checkpoint_connector",
|
||||
|
|
|
@ -24,6 +24,7 @@ from pytorch_lightning.callbacks.prediction_writer import BasePredictionWriter
|
|||
from pytorch_lightning.callbacks.progress import ProgressBar, ProgressBarBase, RichProgressBar
|
||||
from pytorch_lightning.callbacks.pruning import ModelPruning
|
||||
from pytorch_lightning.callbacks.quantization import QuantizationAwareTraining
|
||||
from pytorch_lightning.callbacks.rich_model_summary import RichModelSummary
|
||||
from pytorch_lightning.callbacks.stochastic_weight_avg import StochasticWeightAveraging
|
||||
from pytorch_lightning.callbacks.timer import Timer
|
||||
from pytorch_lightning.callbacks.xla_stats_monitor import XLAStatsMonitor
|
||||
|
@ -45,7 +46,8 @@ __all__ = [
|
|||
"ProgressBar",
|
||||
"ProgressBarBase",
|
||||
"QuantizationAwareTraining",
|
||||
"RichModelSummary",
|
||||
"RichProgressBar",
|
||||
"StochasticWeightAveraging",
|
||||
"Timer",
|
||||
"RichProgressBar",
|
||||
]
|
||||
|
|
|
@ -0,0 +1,109 @@
|
|||
# Copyright The PyTorch Lightning team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from typing import List, Tuple
|
||||
|
||||
from pytorch_lightning.callbacks import ModelSummary
|
||||
from pytorch_lightning.utilities.imports import _RICH_AVAILABLE
|
||||
from pytorch_lightning.utilities.model_summary import get_human_readable_count
|
||||
|
||||
if _RICH_AVAILABLE:
|
||||
from rich.console import Console
|
||||
from rich.table import Table
|
||||
|
||||
|
||||
class RichModelSummary(ModelSummary):
|
||||
r"""
|
||||
Generates a summary of all layers in a :class:`~pytorch_lightning.core.lightning.LightningModule`
|
||||
with `rich text formatting <https://github.com/willmcgugan/rich>`_.
|
||||
|
||||
Install it with pip:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
pip install rich
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
from pytorch_lightning import Trainer
|
||||
from pytorch_lightning.callbacks import RichModelSummary
|
||||
|
||||
trainer = Trainer(callbacks=RichModelSummary())
|
||||
|
||||
You could also enable ``RichModelSummary`` using the :class:`~pytorch_lightning.callbacks.RichProgressBar`
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
from pytorch_lightning import Trainer
|
||||
from pytorch_lightning.callbacks import RichProgressBar
|
||||
|
||||
trainer = Trainer(callbacks=RichProgressBar())
|
||||
|
||||
Args:
|
||||
max_depth: The maximum depth of layer nesting that the summary will include. A value of 0 turns the
|
||||
layer summary off.
|
||||
|
||||
Raises:
|
||||
ImportError:
|
||||
If required `rich` package is not installed on the device.
|
||||
"""
|
||||
|
||||
def __init__(self, max_depth: int = 1) -> None:
|
||||
if not _RICH_AVAILABLE:
|
||||
raise ImportError(
|
||||
"`RichModelSummary` requires `rich` to be installed. Install it by running `pip install rich`."
|
||||
)
|
||||
super().__init__(max_depth)
|
||||
|
||||
@staticmethod
|
||||
def summarize(
|
||||
summary_data: List[Tuple[str, List[str]]],
|
||||
total_parameters: int,
|
||||
trainable_parameters: int,
|
||||
model_size: float,
|
||||
) -> None:
|
||||
|
||||
console = Console()
|
||||
|
||||
table = Table(header_style="bold magenta")
|
||||
table.add_column(" ", style="dim")
|
||||
table.add_column("Name", justify="left", no_wrap=True)
|
||||
table.add_column("Type")
|
||||
table.add_column("Params", justify="right")
|
||||
|
||||
column_names = list(zip(*summary_data))[0]
|
||||
|
||||
for column_name in ["In sizes", "Out sizes"]:
|
||||
if column_name in column_names:
|
||||
table.add_column(column_name, justify="right", style="white")
|
||||
|
||||
rows = list(zip(*(arr[1] for arr in summary_data)))
|
||||
for row in rows:
|
||||
table.add_row(*row)
|
||||
|
||||
console.print(table)
|
||||
|
||||
parameters = []
|
||||
for param in [trainable_parameters, total_parameters - trainable_parameters, total_parameters, model_size]:
|
||||
parameters.append("{:<{}}".format(get_human_readable_count(int(param)), 10))
|
||||
|
||||
grid = Table.grid(expand=True)
|
||||
grid.add_column()
|
||||
grid.add_column()
|
||||
|
||||
grid.add_row(f"[bold]Trainable params[/]: {parameters[0]}")
|
||||
grid.add_row(f"[bold]Non-trainable params[/]: {parameters[1]}")
|
||||
grid.add_row(f"[bold]Total params[/]: {parameters[2]}")
|
||||
grid.add_row(f"[bold]Total estimated model params size (MB)[/]: {parameters[3]}")
|
||||
|
||||
console.print(grid)
|
|
@ -15,7 +15,15 @@ import os
|
|||
from datetime import timedelta
|
||||
from typing import Dict, List, Optional, Union
|
||||
|
||||
from pytorch_lightning.callbacks import Callback, ModelCheckpoint, ModelSummary, ProgressBar, ProgressBarBase
|
||||
from pytorch_lightning.callbacks import (
|
||||
Callback,
|
||||
ModelCheckpoint,
|
||||
ModelSummary,
|
||||
ProgressBar,
|
||||
ProgressBarBase,
|
||||
RichProgressBar,
|
||||
)
|
||||
from pytorch_lightning.callbacks.rich_model_summary import RichModelSummary
|
||||
from pytorch_lightning.callbacks.timer import Timer
|
||||
from pytorch_lightning.utilities import ModelSummaryMode, rank_zero_info
|
||||
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
||||
|
@ -59,8 +67,6 @@ class CallbackConnector:
|
|||
# responsible to stop the training when max_time is reached.
|
||||
self._configure_timer_callback(max_time)
|
||||
|
||||
self._configure_model_summary_callback(weights_summary)
|
||||
|
||||
# init progress bar
|
||||
if process_position != 0:
|
||||
rank_zero_deprecation(
|
||||
|
@ -70,6 +76,9 @@ class CallbackConnector:
|
|||
)
|
||||
self.trainer._progress_bar_callback = self.configure_progress_bar(progress_bar_refresh_rate, process_position)
|
||||
|
||||
# configure the ModelSummary callback
|
||||
self._configure_model_summary_callback(weights_summary)
|
||||
|
||||
# push all checkpoint callbacks to the end
|
||||
# it is important that these are the last callbacks to run
|
||||
self.trainer.callbacks = self._reorder_callbacks(self.trainer.callbacks)
|
||||
|
@ -102,7 +111,12 @@ class CallbackConnector:
|
|||
f" but got {weights_summary}",
|
||||
)
|
||||
max_depth = ModelSummaryMode.get_max_depth(weights_summary)
|
||||
model_summary = ModelSummary(max_depth=max_depth)
|
||||
if self.trainer._progress_bar_callback is not None and isinstance(
|
||||
self.trainer._progress_bar_callback, RichProgressBar
|
||||
):
|
||||
model_summary = RichModelSummary(max_depth=max_depth)
|
||||
else:
|
||||
model_summary = ModelSummary(max_depth=max_depth)
|
||||
self.trainer.callbacks.append(model_summary)
|
||||
|
||||
def _configure_swa_callbacks(self):
|
||||
|
|
|
@ -0,0 +1,35 @@
|
|||
# Copyright The PyTorch Lightning team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import pytest
|
||||
|
||||
from pytorch_lightning import Trainer
|
||||
from pytorch_lightning.callbacks import RichModelSummary, RichProgressBar
|
||||
from pytorch_lightning.utilities.imports import _RICH_AVAILABLE
|
||||
from tests.helpers.runif import RunIf
|
||||
|
||||
|
||||
@RunIf(rich=True)
|
||||
def test_rich_model_summary_callback():
|
||||
|
||||
trainer = Trainer(callbacks=RichProgressBar())
|
||||
|
||||
assert any(isinstance(cb, RichModelSummary) for cb in trainer.callbacks)
|
||||
assert isinstance(trainer.progress_bar_callback, RichProgressBar)
|
||||
|
||||
|
||||
def test_rich_progress_bar_import_error():
|
||||
|
||||
if not _RICH_AVAILABLE:
|
||||
with pytest.raises(ImportError, match="`RichModelSummary` requires `rich` to be installed."):
|
||||
Trainer(callbacks=RichModelSummary())
|
Loading…
Reference in New Issue