add warning when Trainer(log_every_n_steps) not well chosen (#7734)
* add warning * update changelog * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * logger check * add docstring for test Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Nicki Skafte <skaftenicki@gmail.com>
This commit is contained in:
parent
41be61c6f2
commit
20f37b85b6
|
@ -65,6 +65,9 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).
|
|||
- Added trainer stage hooks for Training Plugins and Accelerators ([#7864](https://github.com/PyTorchLightning/pytorch-lightning/pull/7864))
|
||||
|
||||
|
||||
- Added a warning if `Trainer(log_every_n_steps)` is a value too high for the training dataloader ([#7734](https://github.com/PyTorchLightning/pytorch-lightning/pull/7734))
|
||||
|
||||
|
||||
### Changed
|
||||
|
||||
- Changed calling of `untoggle_optimizer(opt_idx)` out of the closure function ([#7563](https://github.com/PyTorchLightning/pytorch-lightning/pull/7563)
|
||||
|
|
|
@ -51,6 +51,7 @@ class TrainerDataLoadingMixin(ABC):
|
|||
test_dataloaders: Optional[List[DataLoader]]
|
||||
num_test_batches: List[Union[int, float]]
|
||||
limit_train_batches: Union[int, float]
|
||||
log_every_n_steps: int
|
||||
overfit_batches: Union[int, float]
|
||||
distributed_sampler_kwargs: dict
|
||||
accelerator: Accelerator
|
||||
|
@ -302,6 +303,13 @@ class TrainerDataLoadingMixin(ABC):
|
|||
self.val_check_batch = int(self.num_training_batches * self.val_check_interval)
|
||||
self.val_check_batch = max(1, self.val_check_batch)
|
||||
|
||||
if self.logger and self.num_training_batches < self.log_every_n_steps:
|
||||
rank_zero_warn(
|
||||
f"The number of training samples ({self.num_training_batches}) is smaller than the logging interval"
|
||||
f" Trainer(log_every_n_steps={self.log_every_n_steps}). Set a lower value for log_every_n_steps if"
|
||||
f" you want to see logs for the training epoch."
|
||||
)
|
||||
|
||||
def _reset_eval_dataloader(
|
||||
self,
|
||||
model: LightningModule,
|
||||
|
|
|
@ -895,6 +895,25 @@ def test_auto_add_worker_init_fn_distributed(tmpdir, monkeypatch):
|
|||
trainer.fit(model, train_dataloader=dataloader)
|
||||
|
||||
|
||||
def test_warning_with_small_dataloader_and_logging_interval(tmpdir):
|
||||
""" Test that a warning message is shown if the dataloader length is too short for the chosen logging interval. """
|
||||
model = BoringModel()
|
||||
dataloader = DataLoader(RandomDataset(32, length=10))
|
||||
model.train_dataloader = lambda: dataloader
|
||||
|
||||
with pytest.warns(UserWarning, match=r"The number of training samples \(10\) is smaller than the logging interval"):
|
||||
trainer = Trainer(
|
||||
default_root_dir=tmpdir,
|
||||
max_epochs=1,
|
||||
log_every_n_steps=11,
|
||||
)
|
||||
trainer.fit(model)
|
||||
|
||||
with pytest.warns(UserWarning, match=r"The number of training samples \(1\) is smaller than the logging interval"):
|
||||
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, log_every_n_steps=2, limit_train_batches=1)
|
||||
trainer.fit(model)
|
||||
|
||||
|
||||
def test_warning_with_iterable_dataset_and_len(tmpdir):
|
||||
""" Tests that a warning message is shown when an IterableDataset defines `__len__`. """
|
||||
model = BoringModel()
|
||||
|
|
Loading…
Reference in New Issue