fixing tests (#372)

* fixing tests

* fixing tests

* fixing tests

* fixing tests

* fixing tests

* fixing tests

* fixing tests

* fixed tests

* fixed tests

* fixed tests

* fixed tests

* fixed tests

* fixed tests

* fixed tests

* fixed tests

* fixed tests
This commit is contained in:
William Falcon 2019-10-16 07:28:47 -04:00 committed by GitHub
parent e2cabb03ba
commit 2044126821
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 65 additions and 67 deletions

View File

@ -271,7 +271,7 @@ class Trainer(TrainerIOMixin):
if self.checkpoint_callback is True:
# init a default one
if isinstance(self.logger, TestTubeLogger):
ckpt_path = '{}/{}/version_{:04d}/{}'.format(
ckpt_path = '{}/{}/version_{}/{}'.format(
self.default_save_path,
self.logger.experiment.name,
self.logger.experiment.version,

View File

@ -32,6 +32,7 @@ from pytorch_lightning.logging import TestTubeLogger
from examples import LightningTemplateModel
# generate a list of random seeds for each test
RANDOM_FILE_PATHS = list(np.random.randint(12000, 19000, 1000))
RANDOM_PORTS = list(np.random.randint(12000, 19000, 1000))
ROOT_SEED = 1234
torch.manual_seed(ROOT_SEED)
@ -42,6 +43,34 @@ RANDOM_SEEDS = list(np.random.randint(0, 10000, 1000))
# ------------------------------------------------------------------------
# TESTS
# ------------------------------------------------------------------------
def test_early_stopping_cpu_model():
"""
Test each of the trainer options
:return:
"""
reset_seed()
stopping = EarlyStopping(monitor='val_loss')
trainer_options = dict(
early_stop_callback=stopping,
gradient_clip_val=1.0,
overfit_pct=0.20,
track_grad_norm=2,
print_nan_grads=True,
show_progress_bar=True,
logger=get_test_tube_logger(),
train_percent_check=0.1,
val_percent_check=0.1
)
model, hparams = get_model()
run_gpu_model_test(trainer_options, model, hparams, on_gpu=False)
# test freeze on cpu
model.freeze()
model.unfreeze()
def test_running_test_pretrained_model_ddp():
"""Verify test() on pretrained model"""
if not can_run_gpu_test():
@ -90,7 +119,29 @@ def test_running_test_pretrained_model_ddp():
[run_prediction(dataloader, pretrained_model) for dataloader in model.test_dataloader()]
# test we have good test accuracy
clear_save_dir()
def test_lbfgs_cpu_model():
"""
Test each of the trainer options
:return:
"""
reset_seed()
trainer_options = dict(
max_nb_epochs=1,
gradient_clip_val=1.0,
print_nan_grads=True,
show_progress_bar=False,
weights_summary='top',
train_percent_check=1.0,
val_percent_check=0.2
)
model, hparams = get_model(use_test_model=True, lbfgs=True)
run_model_test_no_loggers(trainer_options, model, hparams, on_gpu=False)
clear_save_dir()
@ -118,30 +169,7 @@ def test_default_logger_callbacks_cpu_model():
model.freeze()
model.unfreeze()
def test_lbfgs_cpu_model():
"""
Test each of the trainer options
:return:
"""
reset_seed()
trainer_options = dict(
max_nb_epochs=1,
gradient_clip_val=1.0,
print_nan_grads=True,
show_progress_bar=False,
weights_summary='top',
train_percent_check=1.0,
val_percent_check=0.2
)
model, hparams = get_model(use_test_model=True, lbfgs=True)
run_model_test_no_loggers(trainer_options, model, hparams, on_gpu=False)
# test freeze on cpu
model.freeze()
model.unfreeze()
clear_save_dir()
def test_multi_gpu_model_ddp2():
@ -365,7 +393,7 @@ def test_running_test_pretrained_model():
# correct result and ok accuracy
assert result == 1, 'training failed to complete'
pretrained_model = load_model(
logger.experiment, save_dir, module_class=LightningTestModel
logger.experiment, trainer.checkpoint_callback.filepath, module_class=LightningTestModel
)
new_trainer = Trainer(**trainer_options)
@ -595,34 +623,6 @@ def test_single_gpu_batch_parse():
assert batch[1][0]['b'].type() == 'torch.cuda.FloatTensor'
def test_early_stopping_cpu_model():
"""
Test each of the trainer options
:return:
"""
reset_seed()
stopping = EarlyStopping(monitor='val_loss')
trainer_options = dict(
early_stop_callback=stopping,
gradient_clip_val=1.0,
overfit_pct=0.20,
track_grad_norm=2,
print_nan_grads=True,
show_progress_bar=True,
logger=get_test_tube_logger(),
train_percent_check=0.1,
val_percent_check=0.1
)
model, hparams = get_model()
run_gpu_model_test(trainer_options, model, hparams, on_gpu=False)
# test freeze on cpu
model.freeze()
model.unfreeze()
def test_no_val_module():
"""
Tests use case where trainer saves the model, and user loads it from tags independently
@ -1431,7 +1431,6 @@ def test_multiple_test_dataloader():
# ------------------------------------------------------------------------
def run_model_test_no_loggers(trainer_options, model, hparams, on_gpu=True):
save_dir = init_save_dir()
trainer_options['default_save_path'] = save_dir
# fit model
@ -1442,7 +1441,8 @@ def run_model_test_no_loggers(trainer_options, model, hparams, on_gpu=True):
assert result == 1, 'amp + ddp model failed to complete'
# test model loading
pretrained_model = load_model(trainer.logger.experiment, save_dir)
pretrained_model = load_model(trainer.logger.experiment,
trainer.checkpoint_callback.filepath)
# test new model accuracy
[run_prediction(dataloader, pretrained_model) for dataloader in model.test_dataloader()]
@ -1476,7 +1476,7 @@ def run_gpu_model_test(trainer_options, model, hparams, on_gpu=True):
assert result == 1, 'amp + ddp model failed to complete'
# test model loading
pretrained_model = load_model(logger.experiment, save_dir)
pretrained_model = load_model(logger.experiment, trainer.checkpoint_callback.filepath)
# test new model accuracy
[run_prediction(dataloader, pretrained_model) for dataloader in model.test_dataloader()]
@ -1519,7 +1519,7 @@ def get_model(use_test_model=False, lbfgs=False):
hparams = get_hparams()
if lbfgs:
setattr(hparams, 'optimizer_name', 'lbfgs')
setattr(hparams, 'learning_rate', 0.002)
setattr(hparams, 'learning_rate', 0.001)
if use_test_model:
model = LightningTestModel(hparams)
@ -1539,10 +1539,10 @@ def get_test_tube_logger(debug=True, version=None):
def init_save_dir():
root_dir = os.path.dirname(os.path.realpath(__file__))
save_dir = os.path.join(root_dir, 'save_dir')
save_dir = os.path.join(root_dir, 'tests', 'save_dir')
if os.path.exists(save_dir):
n = np.random.randint(0, 10000000, 1)[0]
n = RANDOM_FILE_PATHS.pop()
shutil.move(save_dir, save_dir + f'_{n}')
os.makedirs(save_dir, exist_ok=True)
@ -1554,19 +1554,17 @@ def clear_save_dir():
root_dir = os.path.dirname(os.path.realpath(__file__))
save_dir = os.path.join(root_dir, 'save_dir')
if os.path.exists(save_dir):
n = np.random.randint(0, 10000000, 1)[0]
n = RANDOM_FILE_PATHS.pop()
shutil.move(save_dir, save_dir + f'_{n}')
def load_model(exp, save_dir, module_class=LightningTemplateModel):
def load_model(exp, root_weights_dir, module_class=LightningTemplateModel):
# load trained model
tags_path = exp.get_data_path(exp.name, exp.version)
checkpoint_folder = os.path.join(tags_path, 'checkpoints')
tags_path = os.path.join(tags_path, 'meta_tags.csv')
checkpoints = [x for x in os.listdir(checkpoint_folder) if '.ckpt' in x]
weights_dir = os.path.join(checkpoint_folder, checkpoints[0])
checkpoints = [x for x in os.listdir(root_weights_dir) if '.ckpt' in x]
weights_dir = os.path.join(root_weights_dir, checkpoints[0])
trained_model = module_class.load_from_metrics(weights_path=weights_dir,
tags_csv=tags_path)