Don't raise DeprecationWarning for `LoggerConnector.gpus_metrics` (#9959)

This commit is contained in:
Danielle Pintz 2021-10-18 15:51:09 -07:00 committed by GitHub
parent 65150cdb42
commit 203737bfce
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 7 additions and 41 deletions

View File

@ -56,16 +56,15 @@ argument of :class:`~pytorch_lightning.trainer.trainer.Trainer`)
----------------
Log GPU usage
-------------
Logs (to a logger) the GPU usage for each GPU on the master machine.
(See: :paramref:`~pytorch_lightning.trainer.trainer.Trainer.log_gpu_memory`
argument of :class:`~pytorch_lightning.trainer.trainer.Trainer`)
Log device stats
----------------
Monitor and log device stats during training with the :class:`~pytorch_lightning.callbacks.device_stats_monitor.DeviceStatsMonitor`.
.. testcode::
trainer = Trainer(log_gpu_memory=True)
from pytorch_lightning.callbacks import DeviceStatsMonitor
trainer = Trainer(callbacks=[DeviceStatsMonitor()])
----------------

View File

@ -322,10 +322,6 @@ class LoggerConnector:
.. deprecated:: v1.5
Will be removed in v1.7.
"""
rank_zero_deprecation(
"The property `LoggerConnector.gpus_metrics` was deprecated in v1.5"
" and will be removed in 1.7. Use the `DeviceStatsMonitor` callback instead."
)
if self.trainer._device_type == DeviceType.GPU and self.log_gpu_memory:
mem_map = memory.get_memory_profile(self.log_gpu_memory)
self._gpus_metrics.update(mem_map)

View File

@ -21,7 +21,6 @@ from pytorch_lightning import Callback, LightningDataModule, Trainer
from pytorch_lightning.callbacks.gpu_stats_monitor import GPUStatsMonitor
from pytorch_lightning.callbacks.xla_stats_monitor import XLAStatsMonitor
from pytorch_lightning.loggers import LoggerCollection, TestTubeLogger
from pytorch_lightning.trainer.connectors.logger_connector import LoggerConnector
from tests.deprecated_api import _soft_unimport_module
from tests.helpers import BoringModel
from tests.helpers.datamodules import MNISTDataModule
@ -375,10 +374,7 @@ def test_v1_7_0_trainer_log_gpu_memory(tmpdir):
with pytest.deprecated_call(
match="Setting `log_gpu_memory` with the trainer flag is deprecated in v1.5 and will be removed"
):
trainer = Trainer(log_gpu_memory="min_max")
with pytest.deprecated_call(match="The property `LoggerConnector.gpus_metrics` was deprecated in v1.5"):
lg = LoggerConnector(trainer)
_ = lg.gpus_metrics
_ = Trainer(log_gpu_memory="min_max")
@RunIf(min_gpus=1)

View File

@ -171,7 +171,6 @@ def test_mlflow_logger_dirs_creation(tmpdir):
max_epochs=1,
limit_train_batches=limit_batches,
limit_val_batches=limit_batches,
log_gpu_memory=True,
)
trainer.fit(model)
assert set(os.listdir(tmpdir / exp_id)) == {run_id, "meta.yaml"}

View File

@ -684,28 +684,6 @@ def test_sanity_metrics_are_reset(tmpdir):
assert "val_loss" not in trainer.progress_bar_metrics
@RunIf(min_gpus=2)
@pytest.mark.parametrize("log_gpu_memory", ["all", "min_max"])
def test_log_gpu_memory_without_logging_on_step(tmpdir, log_gpu_memory):
model = BoringModel()
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
limit_train_batches=1,
limit_val_batches=0,
log_gpu_memory=log_gpu_memory,
log_every_n_steps=1,
gpus=[1],
)
trainer.fit(model)
if log_gpu_memory == "min_max":
assert "min_gpu_mem" in trainer.logged_metrics
assert "max_gpu_mem" in trainer.logged_metrics
else:
assert "gpu_id: 1/memory.used (MB)" in trainer.logged_metrics
@RunIf(min_gpus=1)
def test_move_metrics_to_cpu(tmpdir):
class TestModel(BoringModel):

View File

@ -128,7 +128,6 @@ def test_add_argparse_args_redefined_error(cli_args: list, monkeypatch):
# They should not be changed by the argparse interface.
"min_steps": None,
"max_steps": None,
"log_gpu_memory": None,
"accelerator": None,
"weights_save_path": None,
"resume_from_checkpoint": None,

View File

@ -134,7 +134,6 @@ def test_add_argparse_args_redefined_error(cli_args, monkeypatch):
# interface.
min_steps=None,
max_steps=None,
log_gpu_memory=None,
distributed_backend=None,
weights_save_path=None,
resume_from_checkpoint=None,