Fix validation progress counter with check_val_every_n_epoch > 1 (#5952)
Co-authored-by: rohitgr7 <rohitgr1998@gmail.com> Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
This commit is contained in:
parent
0b843848b6
commit
1bd5f36a5b
|
@ -148,9 +148,10 @@ class ProgressBarBase(Callback):
|
|||
validation dataloader is of infinite size.
|
||||
"""
|
||||
total_val_batches = 0
|
||||
if not self.trainer.disable_validation:
|
||||
is_val_epoch = (self.trainer.current_epoch) % self.trainer.check_val_every_n_epoch == 0
|
||||
if self.trainer.enable_validation:
|
||||
is_val_epoch = (self.trainer.current_epoch + 1) % self.trainer.check_val_every_n_epoch == 0
|
||||
total_val_batches = sum(self.trainer.num_val_batches) if is_val_epoch else 0
|
||||
|
||||
return total_val_batches
|
||||
|
||||
@property
|
||||
|
|
|
@ -0,0 +1,53 @@
|
|||
# Copyright The PyTorch Lightning team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import pytest
|
||||
|
||||
from pytorch_lightning.trainer import Trainer
|
||||
from pytorch_lightning.trainer.states import TrainerState
|
||||
from tests.helpers import BoringModel
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
'max_epochs,expected_val_loop_calls,expected_val_batches', [
|
||||
(1, 0, [0]),
|
||||
(4, 2, [0, 2, 0, 2]),
|
||||
(5, 2, [0, 2, 0, 2, 0]),
|
||||
]
|
||||
)
|
||||
def test_check_val_every_n_epoch(tmpdir, max_epochs, expected_val_loop_calls, expected_val_batches):
|
||||
|
||||
class TestModel(BoringModel):
|
||||
val_epoch_calls = 0
|
||||
val_batches = []
|
||||
|
||||
def on_train_epoch_end(self, *args, **kwargs):
|
||||
self.val_batches.append(self.trainer.progress_bar_callback.total_val_batches)
|
||||
|
||||
def on_validation_epoch_start(self) -> None:
|
||||
self.val_epoch_calls += 1
|
||||
|
||||
model = TestModel()
|
||||
trainer = Trainer(
|
||||
default_root_dir=tmpdir,
|
||||
max_epochs=max_epochs,
|
||||
num_sanity_val_steps=0,
|
||||
limit_val_batches=2,
|
||||
check_val_every_n_epoch=2,
|
||||
logger=False,
|
||||
)
|
||||
trainer.fit(model)
|
||||
assert trainer.state == TrainerState.FINISHED, f"Training failed with {trainer.state}"
|
||||
|
||||
assert model.val_epoch_calls == expected_val_loop_calls
|
||||
assert model.val_batches == expected_val_batches
|
Loading…
Reference in New Issue