diff --git a/docs/source-pytorch/upgrade/sections/1_6_regular.rst b/docs/source-pytorch/upgrade/sections/1_6_regular.rst index e0160845ad..e36d328698 100644 --- a/docs/source-pytorch/upgrade/sections/1_6_regular.rst +++ b/docs/source-pytorch/upgrade/sections/1_6_regular.rst @@ -15,7 +15,7 @@ - `PR9699`_ * - used Trainer’s flag ``checkpoint_callback`` - - set ``enable_checkpointing``. If you set ``enable_checkpointing=True``, it configures a default ``ModelCheckpoint`` callback if none is provided ``lightning_pytorch.trainer.trainer.Trainer.callbacks.ModelCheckpoint`` + - set ``enable_checkpointing``. If you set ``enable_checkpointing=True``, it configures a default ``ModelCheckpoint`` callback if none is provided ``lightning.pytorch.trainer.trainer.Trainer.callbacks.ModelCheckpoint`` - `PR9754`_ * - used Trainer’s flag ``stochastic_weight_avg`` diff --git a/docs/source-pytorch/visualize/logging_intermediate.rst b/docs/source-pytorch/visualize/logging_intermediate.rst index f7bfb16565..3c18f80b89 100644 --- a/docs/source-pytorch/visualize/logging_intermediate.rst +++ b/docs/source-pytorch/visualize/logging_intermediate.rst @@ -61,7 +61,7 @@ Multiple loggers support visualizing the model topology. Here's an example that .. code-block:: python def any_lightning_module_function_or_hook(self): - tensorboard_logger = self.logger.experiment + tensorboard_logger = self.logger prototype_array = torch.Tensor(32, 1, 28, 27) tensorboard_logger.log_graph(model=self, input_array=prototype_array)